ViewFormer: NeRF-Free Neural Rendering from Few Images Using Transformers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00361838" target="_blank" >RIV/68407700:21230/22:00361838 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/22:00361838
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-19784-0_12" target="_blank" >https://doi.org/10.1007/978-3-031-19784-0_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-19784-0_12" target="_blank" >10.1007/978-3-031-19784-0_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ViewFormer: NeRF-Free Neural Rendering from Few Images Using Transformers
Popis výsledku v původním jazyce
Novel view synthesis is a long-standing problem. In this work, we consider a variant of the problem where we are given only a few context views sparsely covering a scene or an object. The goal is to predict novel viewpoints in the scene, which requires learning priors. The current state of the art is based on Neural Radiance Field (NeRF), and while achieving impressive results, the methods suffer from long training times as they require evaluating millions of 3D point samples via a neural network for each image. We propose a 2D-only method that maps multiple context views and a query pose to a new image in a single pass of a neural network. Our model uses a two-stage architecture consisting of a codebook and a transformer model. The codebook is used to embed individual images into a smaller latent space, and the transformer solves the view synthesis task in this more compact space. To train our model efficiently, we introduce a novel branching attention mechanism that allows us to use the same model not only for neural rendering but also for camera pose estimation. Experimental results on real-world scenes show that our approach is competitive compared to NeRF-based methods while not reasoning explicitly in 3D, and it is faster to train.
Název v anglickém jazyce
ViewFormer: NeRF-Free Neural Rendering from Few Images Using Transformers
Popis výsledku anglicky
Novel view synthesis is a long-standing problem. In this work, we consider a variant of the problem where we are given only a few context views sparsely covering a scene or an object. The goal is to predict novel viewpoints in the scene, which requires learning priors. The current state of the art is based on Neural Radiance Field (NeRF), and while achieving impressive results, the methods suffer from long training times as they require evaluating millions of 3D point samples via a neural network for each image. We propose a 2D-only method that maps multiple context views and a query pose to a new image in a single pass of a neural network. Our model uses a two-stage architecture consisting of a codebook and a transformer model. The codebook is used to embed individual images into a smaller latent space, and the transformer solves the view synthesis task in this more compact space. To train our model efficiently, we introduce a novel branching attention mechanism that allows us to use the same model not only for neural rendering but also for camera pose estimation. Experimental results on real-world scenes show that our approach is competitive compared to NeRF-based methods while not reasoning explicitly in 3D, and it is faster to train.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computer Vision – ECCV 2022
ISBN
978-3-031-19784-0
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
19
Strana od-do
198-216
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Tel Aviv
Datum konání akce
23. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000904099300012