Edge Augmentation for Large-Scale Sketch Recognition without Sketches
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362153" target="_blank" >RIV/68407700:21230/22:00362153 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICPR56361.2022.9956233" target="_blank" >https://doi.org/10.1109/ICPR56361.2022.9956233</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICPR56361.2022.9956233" target="_blank" >10.1109/ICPR56361.2022.9956233</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Edge Augmentation for Large-Scale Sketch Recognition without Sketches
Popis výsledku v původním jazyce
This work addresses scaling up the sketch classification task into a large number of categories. Collecting sketches for training is a slow and tedious process that has so far precluded any attempts to large-scale sketch recognition. We overcome the lack of training sketch data by exploiting labeled collections of natural images that are easier to obtain. To bridge the domain gap we present a novel augmentation technique that is tailored to the task of learning sketch recognition from a training set of natural images. Randomization is introduced in the parameters of edge detection and edge selection. Natural images are translated to a pseudo-novel domain called "randomized Binary Thin Edges" (rBTE), which is used as a training domain instead of natural images. The ability to scale up is demonstrated by training CNN-based sketch recognition of more than 2.5 times larger number of categories than used previously. For this purpose, a dataset of natural images from 874 categories is constructed by combining a number of popular computer vision datasets. The categories are selected to be suitable for sketch recognition. To estimate the performance, a subset of 393 categories with sketches is also collected.
Název v anglickém jazyce
Edge Augmentation for Large-Scale Sketch Recognition without Sketches
Popis výsledku anglicky
This work addresses scaling up the sketch classification task into a large number of categories. Collecting sketches for training is a slow and tedious process that has so far precluded any attempts to large-scale sketch recognition. We overcome the lack of training sketch data by exploiting labeled collections of natural images that are easier to obtain. To bridge the domain gap we present a novel augmentation technique that is tailored to the task of learning sketch recognition from a training set of natural images. Randomization is introduced in the parameters of edge detection and edge selection. Natural images are translated to a pseudo-novel domain called "randomized Binary Thin Edges" (rBTE), which is used as a training domain instead of natural images. The ability to scale up is demonstrated by training CNN-based sketch recognition of more than 2.5 times larger number of categories than used previously. For this purpose, a dataset of natural images from 874 categories is constructed by combining a number of popular computer vision datasets. The categories are selected to be suitable for sketch recognition. To estimate the performance, a subset of 393 categories with sketches is also collected.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 26th International Conference on Pattern Recognition (ICPR)
ISBN
978-1-6654-9062-7
ISSN
1051-4651
e-ISSN
2831-7475
Počet stran výsledku
8
Strana od-do
3595-3602
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Montreal
Datum konání akce
21. 8. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000897707603084