Graph-Cut RANSAC: Local Optimization on Spatially Coherent Structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362942" target="_blank" >RIV/68407700:21230/22:00362942 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TPAMI.2021.3071812" target="_blank" >https://doi.org/10.1109/TPAMI.2021.3071812</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TPAMI.2021.3071812" target="_blank" >10.1109/TPAMI.2021.3071812</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph-Cut RANSAC: Local Optimization on Spatially Coherent Structures
Popis výsledku v původním jazyce
We propose Graph-Cut RANSAC, GC-RANSAC in short, a new robust geometric model estimation method where the local optimization step is formulated as energy minimization with binary labeling, applying the graph-cut algorithm to select inliers. The minimized energy reflects the assumption that geometric data often form spatially coherent structures - it includes both a unary component representing point-to-model residuals and a binary term promoting spatially coherent inlier-outlier labelling of neighboring points. The proposed local optimization step is conceptually simple, easy to implement, efficient with a globally optimal inlier selection given the model parameters. Graph-Cut RANSAC, equipped with "the bells and whistles" of USAC and MAGSAC++, was tested on a range of problems using a number of publicly available datasets for homography, 6D object pose, fundamental and essential matrix estimation. It is more geometrically accurate than state-of-the-art robust estimators, fails less often and runs faster or with speed similar to less accurate alternatives. The source code is available at https://github.com/danini/graph-cut-ransac.
Název v anglickém jazyce
Graph-Cut RANSAC: Local Optimization on Spatially Coherent Structures
Popis výsledku anglicky
We propose Graph-Cut RANSAC, GC-RANSAC in short, a new robust geometric model estimation method where the local optimization step is formulated as energy minimization with binary labeling, applying the graph-cut algorithm to select inliers. The minimized energy reflects the assumption that geometric data often form spatially coherent structures - it includes both a unary component representing point-to-model residuals and a binary term promoting spatially coherent inlier-outlier labelling of neighboring points. The proposed local optimization step is conceptually simple, easy to implement, efficient with a globally optimal inlier selection given the model parameters. Graph-Cut RANSAC, equipped with "the bells and whistles" of USAC and MAGSAC++, was tested on a range of problems using a number of publicly available datasets for homography, 6D object pose, fundamental and essential matrix estimation. It is more geometrically accurate than state-of-the-art robust estimators, fails less often and runs faster or with speed similar to less accurate alternatives. The source code is available at https://github.com/danini/graph-cut-ransac.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN
0162-8828
e-ISSN
1939-3539
Svazek periodika
44
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
4961-4974
Kód UT WoS článku
000836666600036
EID výsledku v databázi Scopus
2-s2.0-85104195335