A categorical view of varieties of ordered algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00363340" target="_blank" >RIV/68407700:21230/22:00363340 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1017/S0960129521000463" target="_blank" >https://doi.org/10.1017/S0960129521000463</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0960129521000463" target="_blank" >10.1017/S0960129521000463</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A categorical view of varieties of ordered algebras
Popis výsledku v původním jazyce
It is well known that classical varieties of Sigma-algebras correspond bijectively to finitary monads on Set. We present an analogous result for varieties of ordered Sigma-algebras, that is, categories of algebras presented by inequations between Sigma-terms. We prove that they correspond bijectively to strongly finitary monads on Pos. That is, those finitary monads which preserve reflexive coinserters. We deduce that strongly finitary monads have a coinserter presentation, analogous to the coequalizer presentation of finitary monads due to Kelly and Power. We also show that these monads are linings of finitary monads on Set. Finally, varieties presented by equations are proved to correspond to extensions of finitary monads on Set to strongly finitary monads on Pos.
Název v anglickém jazyce
A categorical view of varieties of ordered algebras
Popis výsledku anglicky
It is well known that classical varieties of Sigma-algebras correspond bijectively to finitary monads on Set. We present an analogous result for varieties of ordered Sigma-algebras, that is, categories of algebras presented by inequations between Sigma-terms. We prove that they correspond bijectively to strongly finitary monads on Pos. That is, those finitary monads which preserve reflexive coinserters. We deduce that strongly finitary monads have a coinserter presentation, analogous to the coequalizer presentation of finitary monads due to Kelly and Power. We also show that these monads are linings of finitary monads on Set. Finally, varieties presented by equations are proved to correspond to extensions of finitary monads on Set to strongly finitary monads on Pos.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-00902S" target="_blank" >GA19-00902S: Injektivita a monády v algebře a topologii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Structures in Computer Science
ISSN
0960-1295
e-ISSN
1469-8072
Svazek periodika
32
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
25
Strana od-do
349-373
Kód UT WoS článku
000740897600001
EID výsledku v databázi Scopus
2-s2.0-85123954140