Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

JsonGrinder.jl: Automated Differentiable Neural Architecture for Embedding Arbitrary JSON Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00363523" target="_blank" >RIV/68407700:21230/22:00363523 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://jmlr.org/papers/v23/21-0174.html" target="_blank" >https://jmlr.org/papers/v23/21-0174.html</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    JsonGrinder.jl: Automated Differentiable Neural Architecture for Embedding Arbitrary JSON Data

  • Popis výsledku v původním jazyce

    Standard machine learning (ML) problems are formulated on data converted into a suitable tensor representation. However, there are data sources, for example in cybersecurity, that are naturally represented in a unifying hierarchical structure, such as XML, JSON, and Protocol Buffers. Converting this data to a tensor representation is usually done by manual feature engineering, which is laborious, lossy, and prone to bias originating from the human inability to correctly judge the importance of particular features. JsonGrinder.jl is a library automating various ML tasks on these difficult sources. Starting with an arbitrary set of JSON samples, it automatically creates a differentiable ML model (called hmilnet), which embeds raw JSON samples into a fixed-size tensor representation. This embedding network can be naturally extended by an arbitrary ML model expecting tensor inputs in order to perform classification, regression, or clustering.

  • Název v anglickém jazyce

    JsonGrinder.jl: Automated Differentiable Neural Architecture for Embedding Arbitrary JSON Data

  • Popis výsledku anglicky

    Standard machine learning (ML) problems are formulated on data converted into a suitable tensor representation. However, there are data sources, for example in cybersecurity, that are naturally represented in a unifying hierarchical structure, such as XML, JSON, and Protocol Buffers. Converting this data to a tensor representation is usually done by manual feature engineering, which is laborious, lossy, and prone to bias originating from the human inability to correctly judge the importance of particular features. JsonGrinder.jl is a library automating various ML tasks on these difficult sources. Starting with an arbitrary set of JSON samples, it automatically creates a differentiable ML model (called hmilnet), which embeds raw JSON samples into a fixed-size tensor representation. This embedding network can be naturally extended by an arbitrary ML model expecting tensor inputs in order to perform classification, regression, or clustering.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Machine Learning Research

  • ISSN

    1532-4435

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    5

  • Strana od-do

    1-5

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85148099476