Planning and Acting in Dynamic Environments: Identifying and Avoiding Dangerous Situations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00363577" target="_blank" >RIV/68407700:21230/22:00363577 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10437330
Výsledek na webu
<a href="https://doi.org/10.1080/0952813X.2021.1938697" target="_blank" >https://doi.org/10.1080/0952813X.2021.1938697</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/0952813X.2021.1938697" target="_blank" >10.1080/0952813X.2021.1938697</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Planning and Acting in Dynamic Environments: Identifying and Avoiding Dangerous Situations
Popis výsledku v původním jazyce
In dynamic environments, external events might occur and modify the environment without consent of intelligent agents. Plans of the agents might hence be disrupted and, worse, the agents might end up in dead-end states and no longer be able to achieve their goals. Hence, the agents should monitor the environment during plan execution and if they encounter a dangerous situation they should (reactively) act to escape from it. In this paper, we introduce the notion of dangerous states that the agent might encounter during its plan execution in dynamic environments. We present a method for computing lower bound of dangerousness of a state after applying a sequence of actions. That method is leveraged in identifying situations in which the agent has to start acting to avoid danger. We present two types of such behaviour - purely reactive and proactive (eliminating the source of danger). The introduced concepts for planning with dangerous states are implemented and tested in two scenarios - a simple RPG-like game, called Dark Dungeon, and a platform game inspired by the Perestroika video game. The results show that reasoning with dangerous states achieves better success rate (reaching the goals) than naive planning or rule-based techniques.
Název v anglickém jazyce
Planning and Acting in Dynamic Environments: Identifying and Avoiding Dangerous Situations
Popis výsledku anglicky
In dynamic environments, external events might occur and modify the environment without consent of intelligent agents. Plans of the agents might hence be disrupted and, worse, the agents might end up in dead-end states and no longer be able to achieve their goals. Hence, the agents should monitor the environment during plan execution and if they encounter a dangerous situation they should (reactively) act to escape from it. In this paper, we introduce the notion of dangerous states that the agent might encounter during its plan execution in dynamic environments. We present a method for computing lower bound of dangerousness of a state after applying a sequence of actions. That method is leveraged in identifying situations in which the agent has to start acting to avoid danger. We present two types of such behaviour - purely reactive and proactive (eliminating the source of danger). The introduced concepts for planning with dangerous states are implemented and tested in two scenarios - a simple RPG-like game, called Dark Dungeon, and a platform game inspired by the Perestroika video game. The results show that reasoning with dangerous states achieves better success rate (reaching the goals) than naive planning or rule-based techniques.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Experimental and Theoretical Artificial Intelligence
ISSN
0952-813X
e-ISSN
1362-3079
Svazek periodika
34
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
24
Strana od-do
925-948
Kód UT WoS článku
000668480700001
EID výsledku v databázi Scopus
2-s2.0-85109083631