Autonomous Exploration with Online Learning of Traversable Yet Visually Rigid Obstacles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00362963" target="_blank" >RIV/68407700:21230/23:00362963 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10514-022-10075-4" target="_blank" >https://doi.org/10.1007/s10514-022-10075-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10514-022-10075-4" target="_blank" >10.1007/s10514-022-10075-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Autonomous Exploration with Online Learning of Traversable Yet Visually Rigid Obstacles
Popis výsledku v původním jazyce
This paper concerns online learning of terrain properties combining haptic perception with exteroceptive sensing to reason about forces needed to pass through terrains that visually appear as untraversable obstacles. Terrain learning is studied within the context of autonomous exploration. We propose predicting the traversability of potentially obstructing terrains by active perception to establish a connection between the observed geometric environment model and deliberately sampled forces to pass through the terrain using a haptic sensor that probes the terrain in front of the robot. The developed solution uses a Gaussian Process regressor in online learning and force prediction. The robot is navigated by following the information gain to improve traversability and spatial models. The proposed approach has been experimentally verified in fully autonomous exploration with a multi-legged walking robot. The robot is navigated through visually looking obstacles and explores "hidden" areas while following the expected information gain to explore the terrain properties of the mission area.
Název v anglickém jazyce
Autonomous Exploration with Online Learning of Traversable Yet Visually Rigid Obstacles
Popis výsledku anglicky
This paper concerns online learning of terrain properties combining haptic perception with exteroceptive sensing to reason about forces needed to pass through terrains that visually appear as untraversable obstacles. Terrain learning is studied within the context of autonomous exploration. We propose predicting the traversability of potentially obstructing terrains by active perception to establish a connection between the observed geometric environment model and deliberately sampled forces to pass through the terrain using a haptic sensor that probes the terrain in front of the robot. The developed solution uses a Gaussian Process regressor in online learning and force prediction. The robot is navigated by following the information gain to improve traversability and spatial models. The proposed approach has been experimentally verified in fully autonomous exploration with a multi-legged walking robot. The robot is navigated through visually looking obstacles and explores "hidden" areas while following the expected information gain to explore the terrain properties of the mission area.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Autonomous Robots
ISSN
0929-5593
e-ISSN
1573-7527
Svazek periodika
47
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
161-180
Kód UT WoS článku
000886880700001
EID výsledku v databázi Scopus
2-s2.0-85142529888