Multidimensional Particle Filter for Long-Term Visual Teach and Repeat in Changing Environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00364991" target="_blank" >RIV/68407700:21230/23:00364991 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/LRA.2023.3244418" target="_blank" >https://doi.org/10.1109/LRA.2023.3244418</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LRA.2023.3244418" target="_blank" >10.1109/LRA.2023.3244418</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multidimensional Particle Filter for Long-Term Visual Teach and Repeat in Changing Environments
Popis výsledku v původním jazyce
When a mobile robot is asked to navigate intelligently in an environment, it needs to estimate its own and the environment's state. One of the popular methods for robot state and position estimation is particle filtering (PF). Visual Teach and Repeat (VT & R) is a type of navigation that uses a camera to navigate the robot along the previously traversed path. Particle filters are usually used in VT & R to fuse data from odometry and camera to estimate the distance traveled along the path. However, in VT & R, there are other valuable states that the robot can benefit from, especially when moving through changing environments. We propose a multidimensional particle filter to estimate the robot state in VT & R navigation. Apart from the traveled distance, our particle filter estimates lateral and heading deviation from the taught path as well as the current appearance of the environment. This appearance is estimated using maps created across various environmental conditions recorded during the previous traversals. The joint state estimation is based on contrastive neural network architecture, allowing self-supervised learning. This architecture can process multiple images in parallel, alleviating the potential overhead caused by computing the particle filter over the maps simultaneously. We conducted experiments to show that the joint robot/environment state estimation improves navigation accuracy and robustness in a continual mapping setup. Unlike the other frameworks, which treat the robot position and environment appearance separately, our PF represents them as one multidimensional state, resulting in a more general uncertainty model for VT & R.
Název v anglickém jazyce
Multidimensional Particle Filter for Long-Term Visual Teach and Repeat in Changing Environments
Popis výsledku anglicky
When a mobile robot is asked to navigate intelligently in an environment, it needs to estimate its own and the environment's state. One of the popular methods for robot state and position estimation is particle filtering (PF). Visual Teach and Repeat (VT & R) is a type of navigation that uses a camera to navigate the robot along the previously traversed path. Particle filters are usually used in VT & R to fuse data from odometry and camera to estimate the distance traveled along the path. However, in VT & R, there are other valuable states that the robot can benefit from, especially when moving through changing environments. We propose a multidimensional particle filter to estimate the robot state in VT & R navigation. Apart from the traveled distance, our particle filter estimates lateral and heading deviation from the taught path as well as the current appearance of the environment. This appearance is estimated using maps created across various environmental conditions recorded during the previous traversals. The joint state estimation is based on contrastive neural network architecture, allowing self-supervised learning. This architecture can process multiple images in parallel, alleviating the potential overhead caused by computing the particle filter over the maps simultaneously. We conducted experiments to show that the joint robot/environment state estimation improves navigation accuracy and robustness in a continual mapping setup. Unlike the other frameworks, which treat the robot position and environment appearance separately, our PF represents them as one multidimensional state, resulting in a more general uncertainty model for VT & R.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Robotics and Automation Letters
ISSN
2377-3766
e-ISSN
2377-3766
Svazek periodika
8
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
1951-1958
Kód UT WoS článku
000937134700010
EID výsledku v databázi Scopus
2-s2.0-85149121338