Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Values of games over Boolean player sets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00366651" target="_blank" >RIV/68407700:21230/23:00366651 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ijar.2023.108925" target="_blank" >https://doi.org/10.1016/j.ijar.2023.108925</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijar.2023.108925" target="_blank" >10.1016/j.ijar.2023.108925</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Values of games over Boolean player sets

  • Popis výsledku v původním jazyce

    In this paper, we study new classes of value operators for coalitional games with players organized into a boolean algebra. Coalitional games are cooperative models in which players can form coalitions to maximize profit. The basic solution concepts in such game scenarios are value operators, which assign a unique real value to every player, reflecting thus selected principles of economic rationality. Some value concepts were extended beyond the classic coalitional model where every coalition of players can form. In particular, the extension of Shapley value exists for coalitional games in which players are partially ordered, and the feasible coalitions are the corresponding down-sets. Interestingly, this game-theoretic framework was employed in the method called Information Attribution. This method aims to solve the information decomposition problem, which asks for a particular additive decomposition of the mutual information between the input and target random variables. In such information-theoretic games, the players are predictors, and their set has the natural structure of a boolean algebra. Motivated by the original problem, we consider coalitional games where the players form a boolean algebra, and the coalitions are the corresponding down-sets. This more general approach enables us to study various value solution concepts in detail. Namely, we focus on the classes of values that can represent alternatives to the solution of the information decomposition problem, such as random-order values or sharing values. We extend the axiomatic characterization of some classes of values that were known only for the standard coalitional games.

  • Název v anglickém jazyce

    Values of games over Boolean player sets

  • Popis výsledku anglicky

    In this paper, we study new classes of value operators for coalitional games with players organized into a boolean algebra. Coalitional games are cooperative models in which players can form coalitions to maximize profit. The basic solution concepts in such game scenarios are value operators, which assign a unique real value to every player, reflecting thus selected principles of economic rationality. Some value concepts were extended beyond the classic coalitional model where every coalition of players can form. In particular, the extension of Shapley value exists for coalitional games in which players are partially ordered, and the feasible coalitions are the corresponding down-sets. Interestingly, this game-theoretic framework was employed in the method called Information Attribution. This method aims to solve the information decomposition problem, which asks for a particular additive decomposition of the mutual information between the input and target random variables. In such information-theoretic games, the players are predictors, and their set has the natural structure of a boolean algebra. Motivated by the original problem, we consider coalitional games where the players form a boolean algebra, and the coalitions are the corresponding down-sets. This more general approach enables us to study various value solution concepts in detail. Namely, we focus on the classes of values that can represent alternatives to the solution of the information decomposition problem, such as random-order values or sharing values. We extend the axiomatic characterization of some classes of values that were known only for the standard coalitional games.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Approximate Reasoning

  • ISSN

    0888-613X

  • e-ISSN

    1873-4731

  • Svazek periodika

    158

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    21

  • Strana od-do

    1-21

  • Kód UT WoS článku

    000989570300001

  • EID výsledku v databázi Scopus

    2-s2.0-85153507486