Values of games over Boolean player sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00366651" target="_blank" >RIV/68407700:21230/23:00366651 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ijar.2023.108925" target="_blank" >https://doi.org/10.1016/j.ijar.2023.108925</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2023.108925" target="_blank" >10.1016/j.ijar.2023.108925</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Values of games over Boolean player sets
Popis výsledku v původním jazyce
In this paper, we study new classes of value operators for coalitional games with players organized into a boolean algebra. Coalitional games are cooperative models in which players can form coalitions to maximize profit. The basic solution concepts in such game scenarios are value operators, which assign a unique real value to every player, reflecting thus selected principles of economic rationality. Some value concepts were extended beyond the classic coalitional model where every coalition of players can form. In particular, the extension of Shapley value exists for coalitional games in which players are partially ordered, and the feasible coalitions are the corresponding down-sets. Interestingly, this game-theoretic framework was employed in the method called Information Attribution. This method aims to solve the information decomposition problem, which asks for a particular additive decomposition of the mutual information between the input and target random variables. In such information-theoretic games, the players are predictors, and their set has the natural structure of a boolean algebra. Motivated by the original problem, we consider coalitional games where the players form a boolean algebra, and the coalitions are the corresponding down-sets. This more general approach enables us to study various value solution concepts in detail. Namely, we focus on the classes of values that can represent alternatives to the solution of the information decomposition problem, such as random-order values or sharing values. We extend the axiomatic characterization of some classes of values that were known only for the standard coalitional games.
Název v anglickém jazyce
Values of games over Boolean player sets
Popis výsledku anglicky
In this paper, we study new classes of value operators for coalitional games with players organized into a boolean algebra. Coalitional games are cooperative models in which players can form coalitions to maximize profit. The basic solution concepts in such game scenarios are value operators, which assign a unique real value to every player, reflecting thus selected principles of economic rationality. Some value concepts were extended beyond the classic coalitional model where every coalition of players can form. In particular, the extension of Shapley value exists for coalitional games in which players are partially ordered, and the feasible coalitions are the corresponding down-sets. Interestingly, this game-theoretic framework was employed in the method called Information Attribution. This method aims to solve the information decomposition problem, which asks for a particular additive decomposition of the mutual information between the input and target random variables. In such information-theoretic games, the players are predictors, and their set has the natural structure of a boolean algebra. Motivated by the original problem, we consider coalitional games where the players form a boolean algebra, and the coalitions are the corresponding down-sets. This more general approach enables us to study various value solution concepts in detail. Namely, we focus on the classes of values that can represent alternatives to the solution of the information decomposition problem, such as random-order values or sharing values. We extend the axiomatic characterization of some classes of values that were known only for the standard coalitional games.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
1873-4731
Svazek periodika
158
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
1-21
Kód UT WoS článku
000989570300001
EID výsledku v databázi Scopus
2-s2.0-85153507486