Degradation behaviour analysis and end-of-life prediction of lithium titanate oxide batteries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367002" target="_blank" >RIV/68407700:21230/23:00367002 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.est.2023.107745" target="_blank" >https://doi.org/10.1016/j.est.2023.107745</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.est.2023.107745" target="_blank" >10.1016/j.est.2023.107745</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Degradation behaviour analysis and end-of-life prediction of lithium titanate oxide batteries
Popis výsledku v původním jazyce
Lithium-ion batteries (LiBs) with Lithium titanate oxide Li4Ti5O12(LTO) negative electrodes are an alternative to graphite-based LiBs for high power applications. These cells offer a long lifetime, a wide operating temperature, and improved safety. To ensure the longevity and reliability of the LTO cells in different applications, battery health diagnosis, and lifetime prediction are crucial. This paper examines the cycling ageing behaviour of LTO cells in two different cell temperatures under high-current cycling conditions and various cycle depth (CD) tests. The ageing behaviour is investigated via capacity degradation trend using data-driven technique based on feedforward neural network (FFNN). The model is later validated with the experimental result collected in-house and the lifetime data provided by the manufacturer. The proposed method accurately determines the state of health (SOH) level and predicts the end of life (EOL) with an acceptable error of 5 %.
Název v anglickém jazyce
Degradation behaviour analysis and end-of-life prediction of lithium titanate oxide batteries
Popis výsledku anglicky
Lithium-ion batteries (LiBs) with Lithium titanate oxide Li4Ti5O12(LTO) negative electrodes are an alternative to graphite-based LiBs for high power applications. These cells offer a long lifetime, a wide operating temperature, and improved safety. To ensure the longevity and reliability of the LTO cells in different applications, battery health diagnosis, and lifetime prediction are crucial. This paper examines the cycling ageing behaviour of LTO cells in two different cell temperatures under high-current cycling conditions and various cycle depth (CD) tests. The ageing behaviour is investigated via capacity degradation trend using data-driven technique based on feedforward neural network (FFNN). The model is later validated with the experimental result collected in-house and the lifetime data provided by the manufacturer. The proposed method accurately determines the state of health (SOH) level and predicts the end of life (EOL) with an acceptable error of 5 %.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Energy Storage
ISSN
2352-152X
e-ISSN
2352-1538
Svazek periodika
68
Číslo periodika v rámci svazku
107745
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
001015729300001
EID výsledku v databázi Scopus
2-s2.0-85163403611