Two-Dimensional Rank-Reducing Grammars and Their Complexity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367678" target="_blank" >RIV/68407700:21230/23:00367678 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.25596/jalc-2023-143" target="_blank" >https://doi.org/10.25596/jalc-2023-143</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.25596/jalc-2023-143" target="_blank" >10.25596/jalc-2023-143</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Two-Dimensional Rank-Reducing Grammars and Their Complexity
Popis výsledku v původním jazyce
We study properties of a two-dimensional grammar introduced recently for use in document analysis and recognition. The grammar is obtained from the two-dimensional context-free grammar by limiting the form of productions. Variants (ranks) of the grammar with regard to productions complexity are defined. If the grammar is restricted to produce one-row pictures only, it generates regular languages. We suggest that the lowest-rank variant can be considered as a natural generalization of the regular matrix grammar, which in addition shares some of its good properties. Namely, it can be parsed in time linear in the input area and the emptiness problem is still decidable for the grammar. However, we also show that the higher-rank variants do not loosen complexity of the context-free grammar too much. There is a conditional lower bound preventing to propose a linear-time parsing algorithm. Moreover, the grammar is able to simulate the 2-counter Minsky machine, which results in non-recursive trade-offs between grammars of different ranks and also in undecidability of the emptiness problem.
Název v anglickém jazyce
Two-Dimensional Rank-Reducing Grammars and Their Complexity
Popis výsledku anglicky
We study properties of a two-dimensional grammar introduced recently for use in document analysis and recognition. The grammar is obtained from the two-dimensional context-free grammar by limiting the form of productions. Variants (ranks) of the grammar with regard to productions complexity are defined. If the grammar is restricted to produce one-row pictures only, it generates regular languages. We suggest that the lowest-rank variant can be considered as a natural generalization of the regular matrix grammar, which in addition shares some of its good properties. Namely, it can be parsed in time linear in the input area and the emptiness problem is still decidable for the grammar. However, we also show that the higher-rank variants do not loosen complexity of the context-free grammar too much. There is a conditional lower bound preventing to propose a linear-time parsing algorithm. Moreover, the grammar is able to simulate the 2-counter Minsky machine, which results in non-recursive trade-offs between grammars of different ranks and also in undecidability of the emptiness problem.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-21198S" target="_blank" >GA19-21198S: Složité predikční modely a jejich učení z částečně anotovaných dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Automata, Languages and Combinatorics
ISSN
1430-189X
e-ISSN
2567-3785
Svazek periodika
28
Číslo periodika v rámci svazku
1-3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
24
Strana od-do
143-166
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85167441024