Automatic Classification of Hypokinetic and Hyperkinetic Dysarthria based on GMM-Supervectors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00368520" target="_blank" >RIV/68407700:21230/23:00368520 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.21437/Interspeech.2023-2146" target="_blank" >https://doi.org/10.21437/Interspeech.2023-2146</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2023-2146" target="_blank" >10.21437/Interspeech.2023-2146</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Classification of Hypokinetic and Hyperkinetic Dysarthria based on GMM-Supervectors
Popis výsledku v původním jazyce
Hypokinetic and hyperkinetic dysarthria are motor speech disorders that appear in patients with Parkinson's and Huntington's disease, respectively. They are caused due to progressive lesions or alterations in the basal ganglia. In particular, Huntington's disease (HD) is known to be more invasive and difficult to treat than Parkinson's disease (PD), producing more aggressive motor and cognitive alterations. Since speech production requires the movement and control of many different muscles and limbs, it constitutes a highly complex motor activity that may reflect relevant aspects of the patient's health state. This paper proposes the discrimination between patients with PD, HD, and healthy controls (HC) based on different speech dimensions. Speaker models based on Gaussian-mixture model supervectors are created with the features extracted from each speech dimension. The results suggest that it is possible to distinguish between PD and HD patients using the supervectors-based approach.
Název v anglickém jazyce
Automatic Classification of Hypokinetic and Hyperkinetic Dysarthria based on GMM-Supervectors
Popis výsledku anglicky
Hypokinetic and hyperkinetic dysarthria are motor speech disorders that appear in patients with Parkinson's and Huntington's disease, respectively. They are caused due to progressive lesions or alterations in the basal ganglia. In particular, Huntington's disease (HD) is known to be more invasive and difficult to treat than Parkinson's disease (PD), producing more aggressive motor and cognitive alterations. Since speech production requires the movement and control of many different muscles and limbs, it constitutes a highly complex motor activity that may reflect relevant aspects of the patient's health state. This paper proposes the discrimination between patients with PD, HD, and healthy controls (HC) based on different speech dimensions. Speaker models based on Gaussian-mixture model supervectors are created with the features extracted from each speech dimension. The results suggest that it is possible to distinguish between PD and HD patients using the supervectors-based approach.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LX22NPO5107" target="_blank" >LX22NPO5107: Národní ústav pro neurologický výzkum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH 2023
ISBN
—
ISSN
2308-457X
e-ISSN
—
Počet stran výsledku
5
Strana od-do
2368-2372
Název nakladatele
ISCA - International Speech Communication Association
Místo vydání
Bochum
Místo konání akce
Dublin
Datum konání akce
21. 8. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—