Numerical study of the behavior of rectangular acoustic black holes for sound absorption in air
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00368648" target="_blank" >RIV/68407700:21230/23:00368648 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.wavemoti.2023.103230" target="_blank" >https://doi.org/10.1016/j.wavemoti.2023.103230</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.wavemoti.2023.103230" target="_blank" >10.1016/j.wavemoti.2023.103230</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical study of the behavior of rectangular acoustic black holes for sound absorption in air
Popis výsledku v původním jazyce
In this work, the behavior of acoustic black holes (ABHs) serving as an anechoic termination of air-filled waveguides with a rectangular cross-section is numerically studied. These ABHs consist of a set of rigid ribs separated by narrow slits, whose height smoothly varies along the structure and whose aim is to slow-down the impinging acoustic wave and cause its absorption. For the purpose of this study, a 2D mathematical model based on linearized Navier–Stokes equations and employing the finite element method has been proposed, which allows for an accurate capturing the thermoviscous losses in the acoustic boundary layer adjacent to the solid–fluid interfaces, as well as the effects connected with geometrical details of the ABHs’ inner structure. The numerical results show that in rectangular ABHs with a fine internal structure, the acoustic wave slow-down plays a significant role and that absorption properties are strongly dependent on their inner structure details. Simplified 1D mathematical models of rectangular ABHs based on the Riccati equation or transfer matrix method have also been proposed. These simplified models are computationally highly efficient, as it has been demonstrated, they provide accurate results, especially in the case of ABHs with a fine internal structure, which feature superior acoustic energy absorbing properties.
Název v anglickém jazyce
Numerical study of the behavior of rectangular acoustic black holes for sound absorption in air
Popis výsledku anglicky
In this work, the behavior of acoustic black holes (ABHs) serving as an anechoic termination of air-filled waveguides with a rectangular cross-section is numerically studied. These ABHs consist of a set of rigid ribs separated by narrow slits, whose height smoothly varies along the structure and whose aim is to slow-down the impinging acoustic wave and cause its absorption. For the purpose of this study, a 2D mathematical model based on linearized Navier–Stokes equations and employing the finite element method has been proposed, which allows for an accurate capturing the thermoviscous losses in the acoustic boundary layer adjacent to the solid–fluid interfaces, as well as the effects connected with geometrical details of the ABHs’ inner structure. The numerical results show that in rectangular ABHs with a fine internal structure, the acoustic wave slow-down plays a significant role and that absorption properties are strongly dependent on their inner structure details. Simplified 1D mathematical models of rectangular ABHs based on the Riccati equation or transfer matrix method have also been proposed. These simplified models are computationally highly efficient, as it has been demonstrated, they provide accurate results, especially in the case of ABHs with a fine internal structure, which feature superior acoustic energy absorbing properties.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10307 - Acoustics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-33896S" target="_blank" >GA22-33896S: Pokročilé metody řízení zvukových a elastických vlnových polí: akustické černé díry, metamateriály a funkčně gradované materiály</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Wave Motion
ISSN
0165-2125
e-ISSN
1878-433X
Svazek periodika
123
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
001088644000001
EID výsledku v databázi Scopus
2-s2.0-85173241099