Improving the Scalability of Automated Planning-based Vehicle Routing via Smart Routes Identification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00368791" target="_blank" >RIV/68407700:21230/23:00368791 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/23:00368791
Výsledek na webu
<a href="http://dx.doi.org/10.1109/MT-ITS56129.2023.10241639" target="_blank" >http://dx.doi.org/10.1109/MT-ITS56129.2023.10241639</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MT-ITS56129.2023.10241639" target="_blank" >10.1109/MT-ITS56129.2023.10241639</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving the Scalability of Automated Planning-based Vehicle Routing via Smart Routes Identification
Popis výsledku v původním jazyce
Due to growing urbanisation, traffic infrastructures have to accommodate increasing demands of traffic volume. One promising way for supporting a better exploitation of traffic networks is vehicle routing, that can distribute traffic from congested links to under utilised ones. Automated Planning techniques, a research field of Artificial Intelligence, have demonstrated to be a suitable approach for performing effective centralised traffic distribution. However, a main weakness of this class of approaches is the limited scalability to large and complex networks. In this paper, we aim to improve the scalability of automated planning techniques for urban traffic distribution by introducing an approach for the identification of routes to be considered. The proposed technique can significantly improve the planning capabilities by simplifying the complexity of the urban network to be considered, as demonstrated by our extensive experimental analysis performed on realistic traffic data on part of the New York and Sydney urban areas.
Název v anglickém jazyce
Improving the Scalability of Automated Planning-based Vehicle Routing via Smart Routes Identification
Popis výsledku anglicky
Due to growing urbanisation, traffic infrastructures have to accommodate increasing demands of traffic volume. One promising way for supporting a better exploitation of traffic networks is vehicle routing, that can distribute traffic from congested links to under utilised ones. Automated Planning techniques, a research field of Artificial Intelligence, have demonstrated to be a suitable approach for performing effective centralised traffic distribution. However, a main weakness of this class of approaches is the limited scalability to large and complex networks. In this paper, we aim to improve the scalability of automated planning techniques for urban traffic distribution by introducing an approach for the identification of routes to be considered. The proposed technique can significantly improve the planning capabilities by simplifying the complexity of the urban network to be considered, as demonstrated by our extensive experimental analysis performed on realistic traffic data on part of the New York and Sydney urban areas.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
8th International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2023
ISBN
978-1-6654-5530-5
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
IEEE Computer Society
Místo vydání
Los Alamitos
Místo konání akce
Nice
Datum konání akce
14. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001069745000045