Scatterplot Visualization of Hierarchically Clustered Data Points
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00368873" target="_blank" >RIV/68407700:21230/23:00368873 - isvavai.cz</a>
Výsledek na webu
<a href="https://cescg.org/cescg_submission/scatterplot-visualization-of-hierarchically-clustered-data-points/" target="_blank" >https://cescg.org/cescg_submission/scatterplot-visualization-of-hierarchically-clustered-data-points/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scatterplot Visualization of Hierarchically Clustered Data Points
Popis výsledku v původním jazyce
The focus of this paper is real-time visualization of and interaction with scatterplots with hundreds of thousands of data points, where the points are organized into a hierarchy of clusters. We present a technique that automatically selects a color palette for the clusters of the selected level. The level of the cluster hierarchy and the color palette are dynamically adjusted by zooming the scatterplot. Furthermore, the technique improves visibility of the displayed clusters by reducing occlusion of the overlapping clusters. We demonstrate the visualization technique using two real medical datasets containing 2D coordinates of hundreds of thousands points.
Název v anglickém jazyce
Scatterplot Visualization of Hierarchically Clustered Data Points
Popis výsledku anglicky
The focus of this paper is real-time visualization of and interaction with scatterplots with hundreds of thousands of data points, where the points are organized into a hierarchy of clusters. We present a technique that automatically selects a color palette for the clusters of the selected level. The level of the cluster hierarchy and the color palette are dynamically adjusted by zooming the scatterplot. Furthermore, the technique improves visibility of the displayed clusters by reducing occlusion of the overlapping clusters. We demonstrate the visualization technique using two real medical datasets containing 2D coordinates of hundreds of thousands points.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů