A phase-time-path-difference approach for online wave direction and wave number estimation from measured ship motions in zero and forward speed using a single inertial measurement unit
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00369063" target="_blank" >RIV/68407700:21230/23:00369063 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.oceaneng.2023.116131" target="_blank" >https://doi.org/10.1016/j.oceaneng.2023.116131</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.oceaneng.2023.116131" target="_blank" >10.1016/j.oceaneng.2023.116131</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A phase-time-path-difference approach for online wave direction and wave number estimation from measured ship motions in zero and forward speed using a single inertial measurement unit
Popis výsledku v původním jazyce
This study investigates the potential capability of a relatively new and unexplored signal-based approach for shipboard wave estimation. The approach uses the phase-time-path-differences (PTPDs) from an array of shipboard sensors to uniquely resolve the wave propagation direction and wave number. We derive a kinematic PTPD model accounting for forward vessel speed and assess its theoretical foundation to model the sensor delays on a rigid body. The forward-speed PTPD model is structurally equivalent to the zero-speed model considered in previous works, thus retaining the same observability results provided by a noncollinear array of a minimum of three sensors. Moreover, based on the outlined theory and PTPD model, we propose a methodology to estimate the main wave propagation direction and wave number online by employing a fast Fourier transform (FFT), an unscented Kalman filter (UKF), and a rigid-body measurement transformation based on a single inertial measurement unit (IMU). Provided that the vessel in question can be considered a rigid body, a single IMU is sufficient to obtain the desired wave quantities instead of three IMUs, as initially proposed in our previous work. Additionally, our methodology incorporates a novel frequency threshold to avoid distorted wave components caused by the effect of vessel filtering. The performance of our PTPD method is evaluated on data collected from a wave tank and full-scale experiments involving a vessel with zero and non-zero forward speed. The results show very good agreement with the reference wave values reported from a commercial wave radar and wave buoys operating in proximity to the vessel, indicating that our proposed method is competitive with existing wave measurement technology in terms of accuracy and online performance while being cheap, easy to install, flexible, and robust against environmental influences.
Název v anglickém jazyce
A phase-time-path-difference approach for online wave direction and wave number estimation from measured ship motions in zero and forward speed using a single inertial measurement unit
Popis výsledku anglicky
This study investigates the potential capability of a relatively new and unexplored signal-based approach for shipboard wave estimation. The approach uses the phase-time-path-differences (PTPDs) from an array of shipboard sensors to uniquely resolve the wave propagation direction and wave number. We derive a kinematic PTPD model accounting for forward vessel speed and assess its theoretical foundation to model the sensor delays on a rigid body. The forward-speed PTPD model is structurally equivalent to the zero-speed model considered in previous works, thus retaining the same observability results provided by a noncollinear array of a minimum of three sensors. Moreover, based on the outlined theory and PTPD model, we propose a methodology to estimate the main wave propagation direction and wave number online by employing a fast Fourier transform (FFT), an unscented Kalman filter (UKF), and a rigid-body measurement transformation based on a single inertial measurement unit (IMU). Provided that the vessel in question can be considered a rigid body, a single IMU is sufficient to obtain the desired wave quantities instead of three IMUs, as initially proposed in our previous work. Additionally, our methodology incorporates a novel frequency threshold to avoid distorted wave components caused by the effect of vessel filtering. The performance of our PTPD method is evaluated on data collected from a wave tank and full-scale experiments involving a vessel with zero and non-zero forward speed. The results show very good agreement with the reference wave values reported from a commercial wave radar and wave buoys operating in proximity to the vessel, indicating that our proposed method is competitive with existing wave measurement technology in terms of accuracy and online performance while being cheap, easy to install, flexible, and robust against environmental influences.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ocean Engineering
ISSN
0029-8018
e-ISSN
1873-5258
Svazek periodika
288
Číslo periodika v rámci svazku
Part 2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
25
Strana od-do
—
Kód UT WoS článku
001105337400001
EID výsledku v databázi Scopus
2-s2.0-85175169882