Self-supervised Learning for Fusion of IR and RGB Images in Visual Teach and Repeat Navigation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00369475" target="_blank" >RIV/68407700:21230/23:00369475 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ECMR59166.2023.10256333" target="_blank" >https://doi.org/10.1109/ECMR59166.2023.10256333</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ECMR59166.2023.10256333" target="_blank" >10.1109/ECMR59166.2023.10256333</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-supervised Learning for Fusion of IR and RGB Images in Visual Teach and Repeat Navigation
Popis výsledku v původním jazyce
With increasing computation power, longer battery life and lower prices, mobile robots are becoming a viable option for many applications. When the application requires long-term autonomy in an uncontrolled environment, it is necessary to equip the robot with a navigation system robust to environmental changes. Visual Teach and Repeat (VT&R) is one such navigation system that is lightweight and easy to use. Similarly, as other methods rely on camera input, the performance of VT&R can be highly influenced by changes in the scene's appearance. One way to address this problem is to use machine learning or/and add redundancy to the sensory input. However, it is usually complicated to collect long-term datasets for given sensory input, which can be exploited by machine learning methods to extract knowledge about possible changes in the environment from the data. In this paper, we show that we can use a dataset not containing the environmental changes to train a model processing infrared images and improve the robustness of the VT&R framework by fusion with the classic method based on RGB images. In particular, our experiments show that the proposed training scheme and fusion method can alleviate the problems arising from adverse illumination changes. Our approach can broaden the scope of possible VT&R applications that require deployment in environments with significant illumination changes.
Název v anglickém jazyce
Self-supervised Learning for Fusion of IR and RGB Images in Visual Teach and Repeat Navigation
Popis výsledku anglicky
With increasing computation power, longer battery life and lower prices, mobile robots are becoming a viable option for many applications. When the application requires long-term autonomy in an uncontrolled environment, it is necessary to equip the robot with a navigation system robust to environmental changes. Visual Teach and Repeat (VT&R) is one such navigation system that is lightweight and easy to use. Similarly, as other methods rely on camera input, the performance of VT&R can be highly influenced by changes in the scene's appearance. One way to address this problem is to use machine learning or/and add redundancy to the sensory input. However, it is usually complicated to collect long-term datasets for given sensory input, which can be exploited by machine learning methods to extract knowledge about possible changes in the environment from the data. In this paper, we show that we can use a dataset not containing the environmental changes to train a model processing infrared images and improve the robustness of the VT&R framework by fusion with the classic method based on RGB images. In particular, our experiments show that the proposed training scheme and fusion method can alleviate the problems arising from adverse illumination changes. Our approach can broaden the scope of possible VT&R applications that require deployment in environments with significant illumination changes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 11th European Conference on Mobile Robots
ISBN
979-8-3503-0704-7
ISSN
2639-7919
e-ISSN
—
Počet stran výsledku
7
Strana od-do
57-63
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Brighton
Místo konání akce
Coimbra
Datum konání akce
4. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001082260500009