Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Intelligent Network Maintenance Modeling for Fixed Broadband Networks in Sustainable Smart Homes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00369869" target="_blank" >RIV/68407700:21230/23:00369869 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/JIOT.2023.3277590" target="_blank" >https://doi.org/10.1109/JIOT.2023.3277590</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JIOT.2023.3277590" target="_blank" >10.1109/JIOT.2023.3277590</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Intelligent Network Maintenance Modeling for Fixed Broadband Networks in Sustainable Smart Homes

  • Popis výsledku v původním jazyce

    Due to the emergence of sustainable smart homes, each smart device requires more bandwidth putting pressure on the existing home networks. A very good solution to ensure high-bandwidth home networks is the fiber-to-the-home (FTTH) technology. FTTH delivers high-speed Internet from a central point directly to the home through fiber optic cables. This fixed broadband network can transmit information at virtually unlimited speed and capacity enabling homes to be smarter. Hence, a well-monitored and well-maintained FTTH broadband network is necessary to obtain a high level of service availability and sustainability in smart homes. This study aims to develop a predictive model that will proactively monitor and maintain FTTH networks through the use of sophisticated modeling techniques such as machine learning (ML). The predictive model targets to classify the proposed technician resolution based on the historical FTTH field data set. The results show that the K-nearest neighbors (KNN)-based model obtained the highest accuracy of 89% followed by the feedforward artificial neural network (FF-ANN)-based model with 86%. In addition, the identified anomalies from the data set affecting service degradation and performance include FTTH access issues, optical network unit issues, and faults in customer premises equipment.

  • Název v anglickém jazyce

    Intelligent Network Maintenance Modeling for Fixed Broadband Networks in Sustainable Smart Homes

  • Popis výsledku anglicky

    Due to the emergence of sustainable smart homes, each smart device requires more bandwidth putting pressure on the existing home networks. A very good solution to ensure high-bandwidth home networks is the fiber-to-the-home (FTTH) technology. FTTH delivers high-speed Internet from a central point directly to the home through fiber optic cables. This fixed broadband network can transmit information at virtually unlimited speed and capacity enabling homes to be smarter. Hence, a well-monitored and well-maintained FTTH broadband network is necessary to obtain a high level of service availability and sustainability in smart homes. This study aims to develop a predictive model that will proactively monitor and maintain FTTH networks through the use of sophisticated modeling techniques such as machine learning (ML). The predictive model targets to classify the proposed technician resolution based on the historical FTTH field data set. The results show that the K-nearest neighbors (KNN)-based model obtained the highest accuracy of 89% followed by the feedforward artificial neural network (FF-ANN)-based model with 86%. In addition, the identified anomalies from the data set affecting service degradation and performance include FTTH access issues, optical network unit issues, and faults in customer premises equipment.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Internet of Things Journal

  • ISSN

    2327-4662

  • e-ISSN

    2327-4662

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    20

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    18067-18081

  • Kód UT WoS článku

    001081924500036

  • EID výsledku v databázi Scopus

    2-s2.0-85160219984