Intelligent Network Maintenance Modeling for Fixed Broadband Networks in Sustainable Smart Homes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00369869" target="_blank" >RIV/68407700:21230/23:00369869 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/JIOT.2023.3277590" target="_blank" >https://doi.org/10.1109/JIOT.2023.3277590</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JIOT.2023.3277590" target="_blank" >10.1109/JIOT.2023.3277590</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intelligent Network Maintenance Modeling for Fixed Broadband Networks in Sustainable Smart Homes
Popis výsledku v původním jazyce
Due to the emergence of sustainable smart homes, each smart device requires more bandwidth putting pressure on the existing home networks. A very good solution to ensure high-bandwidth home networks is the fiber-to-the-home (FTTH) technology. FTTH delivers high-speed Internet from a central point directly to the home through fiber optic cables. This fixed broadband network can transmit information at virtually unlimited speed and capacity enabling homes to be smarter. Hence, a well-monitored and well-maintained FTTH broadband network is necessary to obtain a high level of service availability and sustainability in smart homes. This study aims to develop a predictive model that will proactively monitor and maintain FTTH networks through the use of sophisticated modeling techniques such as machine learning (ML). The predictive model targets to classify the proposed technician resolution based on the historical FTTH field data set. The results show that the K-nearest neighbors (KNN)-based model obtained the highest accuracy of 89% followed by the feedforward artificial neural network (FF-ANN)-based model with 86%. In addition, the identified anomalies from the data set affecting service degradation and performance include FTTH access issues, optical network unit issues, and faults in customer premises equipment.
Název v anglickém jazyce
Intelligent Network Maintenance Modeling for Fixed Broadband Networks in Sustainable Smart Homes
Popis výsledku anglicky
Due to the emergence of sustainable smart homes, each smart device requires more bandwidth putting pressure on the existing home networks. A very good solution to ensure high-bandwidth home networks is the fiber-to-the-home (FTTH) technology. FTTH delivers high-speed Internet from a central point directly to the home through fiber optic cables. This fixed broadband network can transmit information at virtually unlimited speed and capacity enabling homes to be smarter. Hence, a well-monitored and well-maintained FTTH broadband network is necessary to obtain a high level of service availability and sustainability in smart homes. This study aims to develop a predictive model that will proactively monitor and maintain FTTH networks through the use of sophisticated modeling techniques such as machine learning (ML). The predictive model targets to classify the proposed technician resolution based on the historical FTTH field data set. The results show that the K-nearest neighbors (KNN)-based model obtained the highest accuracy of 89% followed by the feedforward artificial neural network (FF-ANN)-based model with 86%. In addition, the identified anomalies from the data set affecting service degradation and performance include FTTH access issues, optical network unit issues, and faults in customer premises equipment.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Internet of Things Journal
ISSN
2327-4662
e-ISSN
2327-4662
Svazek periodika
10
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
18067-18081
Kód UT WoS článku
001081924500036
EID výsledku v databázi Scopus
2-s2.0-85160219984