AIDA-A Holistic AI-driven Networking and Processing Framework for Industrial IoT Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00370652" target="_blank" >RIV/68407700:21230/23:00370652 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.iot.2023.100805" target="_blank" >https://doi.org/10.1016/j.iot.2023.100805</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.iot.2023.100805" target="_blank" >10.1016/j.iot.2023.100805</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
AIDA-A Holistic AI-driven Networking and Processing Framework for Industrial IoT Applications
Popis výsledku v původním jazyce
Industry 4.0 is characterized by digitalized production facilities, where a large volume of sensors collect a vast amount of data that is used to increase the sustainability of the production by e.g. optimizing process parameters, reducing machine downtime and material waste, and the like. However, making intelligent data-driven decisions under timeliness constraints requires the integration of time-sensitive networks with reliable data ingestion and processing infrastructure with plug-in support of Machine Learning (ML) pipelines. However, such integration is difficult due to the lack of frameworks that flexibly integrate and program the networking and computing infrastructures, while allowing ML pipelines to ingest the collected data and make trustworthy decisions in real time. In this paper, we present AIDA - a novel holistic AI-driven network and processing framework for reliable data-driven real-time industrial IoT applications. AIDA manages and configures Time-Sensitive networks (TSN) to enable real-time data ingestion into an observable AI-powered edge/cloud continuum. Pluggable and trustworthy ML components that make timely decisions for various industrial IoT applications and the infrastructure itself are an intrinsic part of AIDA. We introduce the AIDA architecture, demonstrate the building blocks of our framework and illustrate it with two use cases.
Název v anglickém jazyce
AIDA-A Holistic AI-driven Networking and Processing Framework for Industrial IoT Applications
Popis výsledku anglicky
Industry 4.0 is characterized by digitalized production facilities, where a large volume of sensors collect a vast amount of data that is used to increase the sustainability of the production by e.g. optimizing process parameters, reducing machine downtime and material waste, and the like. However, making intelligent data-driven decisions under timeliness constraints requires the integration of time-sensitive networks with reliable data ingestion and processing infrastructure with plug-in support of Machine Learning (ML) pipelines. However, such integration is difficult due to the lack of frameworks that flexibly integrate and program the networking and computing infrastructures, while allowing ML pipelines to ingest the collected data and make trustworthy decisions in real time. In this paper, we present AIDA - a novel holistic AI-driven network and processing framework for reliable data-driven real-time industrial IoT applications. AIDA manages and configures Time-Sensitive networks (TSN) to enable real-time data ingestion into an observable AI-powered edge/cloud continuum. Pluggable and trustworthy ML components that make timely decisions for various industrial IoT applications and the infrastructure itself are an intrinsic part of AIDA. We introduce the AIDA architecture, demonstrate the building blocks of our framework and illustrate it with two use cases.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Internet of Things
ISSN
2543-1536
e-ISSN
2542-6605
Svazek periodika
22
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
001053228900001
EID výsledku v databázi Scopus
2-s2.0-85159450974