Optimization of Cell Individual Offset for Handover of Flying Base Stations and Users
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00370684" target="_blank" >RIV/68407700:21230/23:00370684 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TWC.2022.3216342" target="_blank" >https://doi.org/10.1109/TWC.2022.3216342</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TWC.2022.3216342" target="_blank" >10.1109/TWC.2022.3216342</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization of Cell Individual Offset for Handover of Flying Base Stations and Users
Popis výsledku v původním jazyce
To ensure a seamless mobility of users in the scenario with flying base stations (FlyBSs) and static ground base stations (GBSs), an efficient handover mechanism is required. In this paper, we introduce new framework simultaneously managing cell individual offset (CIO) for handover of both FlyBSs and mobile users. Our objective is to maximize capacity of the mobile users while considering also a cost of handover to reflect potential excessive signaling and energy consumption due to redundant handovers. This problem is of a very high complexity for conventional optimization methods and optimal solution would require knowledge of information commonly not available to the mobile network. Hence, we adjust the CIO of FlyBSs and GBSs via reinforcement learning. First, we adopt Q- learning to solve the problem. Due to practical limitations implied by a large Q-table, we also propose Q- learning with approximated Q-table. Still, for larger networks, even the approximated Q-table can require a large storage and computation time. Therefore, we apply also actor-critic-based deep reinforcement learning. Simulation results demonstrate that all three proposed algorithms converge promptly and increase the communication capacity by dozens of percent while the handover failure ratio and the handover ping-pong ratio are reduced multiple times compared to state-of-the-art.
Název v anglickém jazyce
Optimization of Cell Individual Offset for Handover of Flying Base Stations and Users
Popis výsledku anglicky
To ensure a seamless mobility of users in the scenario with flying base stations (FlyBSs) and static ground base stations (GBSs), an efficient handover mechanism is required. In this paper, we introduce new framework simultaneously managing cell individual offset (CIO) for handover of both FlyBSs and mobile users. Our objective is to maximize capacity of the mobile users while considering also a cost of handover to reflect potential excessive signaling and energy consumption due to redundant handovers. This problem is of a very high complexity for conventional optimization methods and optimal solution would require knowledge of information commonly not available to the mobile network. Hence, we adjust the CIO of FlyBSs and GBSs via reinforcement learning. First, we adopt Q- learning to solve the problem. Due to practical limitations implied by a large Q-table, we also propose Q- learning with approximated Q-table. Still, for larger networks, even the approximated Q-table can require a large storage and computation time. Therefore, we apply also actor-critic-based deep reinforcement learning. Simulation results demonstrate that all three proposed algorithms converge promptly and increase the communication capacity by dozens of percent while the handover failure ratio and the handover ping-pong ratio are reduced multiple times compared to state-of-the-art.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/LTT20004" target="_blank" >LTT20004: Spolupráce s mezinárodním výzkumným centrem v oblasti digitálních komunikačních systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Wireless Communications
ISSN
1536-1276
e-ISSN
1558-2248
Svazek periodika
22
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
3180-3193
Kód UT WoS článku
000991554300020
EID výsledku v databázi Scopus
2-s2.0-85141443966