DQSOps: Data Quality Scoring Operations Framework for Data-Driven Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00371233" target="_blank" >RIV/68407700:21230/23:00371233 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3593434.3593445" target="_blank" >https://doi.org/10.1145/3593434.3593445</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3593434.3593445" target="_blank" >10.1145/3593434.3593445</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DQSOps: Data Quality Scoring Operations Framework for Data-Driven Applications
Popis výsledku v původním jazyce
Data quality assessment has become a prominent component in the successful execution of complex data-driven artificial intelligence (AI) software systems. In practice, real-world applications generate huge volumes of data at speeds. These data streams require analysis and preprocessing before being permanently stored or used in a learning task. Therefore, significant attention has been paid to the systematic management and construction of high-quality datasets. Nevertheless, managing voluminous and high-velocity data streams is usually performed manually (i.e. offline), making it an impractical strategy in production environments. To address this challenge, DataOps has emerged to achieve life-cycle automation of data processes using DevOps principles. However, determining the data quality based on a fitness scale constitutes a complex task within the framework of DataOps. This paper presents a novel Data Quality Scoring Operations (DQSOps) framework that yields a quality score for production data in DataOps workflows. The framework incorporates two scoring approaches, an ML prediction-based approach that predicts the data quality score and a standard-based approach that periodically produces the ground-truth scores based on assessing several data quality dimensions. We deploy the DQSOps framework in a real-world industrial use case. The results show that DQSOps achieves significant computational speedup rates compared to the conventional approach of data quality scoring while maintaining high prediction performance.
Název v anglickém jazyce
DQSOps: Data Quality Scoring Operations Framework for Data-Driven Applications
Popis výsledku anglicky
Data quality assessment has become a prominent component in the successful execution of complex data-driven artificial intelligence (AI) software systems. In practice, real-world applications generate huge volumes of data at speeds. These data streams require analysis and preprocessing before being permanently stored or used in a learning task. Therefore, significant attention has been paid to the systematic management and construction of high-quality datasets. Nevertheless, managing voluminous and high-velocity data streams is usually performed manually (i.e. offline), making it an impractical strategy in production environments. To address this challenge, DataOps has emerged to achieve life-cycle automation of data processes using DevOps principles. However, determining the data quality based on a fitness scale constitutes a complex task within the framework of DataOps. This paper presents a novel Data Quality Scoring Operations (DQSOps) framework that yields a quality score for production data in DataOps workflows. The framework incorporates two scoring approaches, an ML prediction-based approach that predicts the data quality score and a standard-based approach that periodically produces the ground-truth scores based on assessing several data quality dimensions. We deploy the DQSOps framework in a real-world industrial use case. The results show that DQSOps achieves significant computational speedup rates compared to the conventional approach of data quality scoring while maintaining high prediction performance.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering
ISBN
979-8-4007-0044-6
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
32-41
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Oulu
Datum konání akce
13. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001112128800005