Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00371977" target="_blank" >RIV/68407700:21230/23:00371977 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/23:00371977
Výsledek na webu
<a href="https://doi.org/10.1109/CVPR52729.2023.01262" target="_blank" >https://doi.org/10.1109/CVPR52729.2023.01262</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR52729.2023.01262" target="_blank" >10.1109/CVPR52729.2023.01262</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses
Popis výsledku v původním jazyce
Visual localization is the task of estimating the camera pose from which a given image was taken and is central to several 3D computer vision applications. With the rapid growth in the popularity of AR/VR/MR devices and cloud based applications, privacy issues are becoming a very im portant aspect of the localization process. Existing work on privacy-preserving localization aims to defend against an attacker who has access to a cloud-based service. In this paper, we show that an attacker can learn about details of a scene without any access by simply querying a localization service. The attack is based on the observation that modern visual localization algorithms are robust to variations in ap pearance and geometry. While this is in general a desired property, it also leads to algorithms localizing objects that are similar enough to those present in a scene. An attacker can thus query a server with a large enough set of images of objects, e.g., obtained from the Internet, and some of them will be localized. The attacker can thus learn about object placements from the camera poses returned by the service (which is the minimal information returned by such a ser vice). In this paper, we develop a proof-of-concept version of this attack and demonstrate its practical feasibility. The attack does not place any requirements on the localization algorithm used, and thus also applies to privacy-preserving representations. Current work on privacy-preserving repre sentations alone is thus insufficient.
Název v anglickém jazyce
Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses
Popis výsledku anglicky
Visual localization is the task of estimating the camera pose from which a given image was taken and is central to several 3D computer vision applications. With the rapid growth in the popularity of AR/VR/MR devices and cloud based applications, privacy issues are becoming a very im portant aspect of the localization process. Existing work on privacy-preserving localization aims to defend against an attacker who has access to a cloud-based service. In this paper, we show that an attacker can learn about details of a scene without any access by simply querying a localization service. The attack is based on the observation that modern visual localization algorithms are robust to variations in ap pearance and geometry. While this is in general a desired property, it also leads to algorithms localizing objects that are similar enough to those present in a scene. An attacker can thus query a server with a large enough set of images of objects, e.g., obtained from the Internet, and some of them will be localized. The attacker can thus learn about object placements from the camera poses returned by the service (which is the minimal information returned by such a ser vice). In this paper, we develop a proof-of-concept version of this attack and demonstrate its practical feasibility. The attack does not place any requirements on the localization algorithm used, and thus also applies to privacy-preserving representations. Current work on privacy-preserving repre sentations alone is thus insufficient.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN
979-8-3503-0129-8
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
10
Strana od-do
13132-13141
Název nakladatele
IEEE Computer Society
Místo vydání
USA
Místo konání akce
Vancouver
Datum konání akce
18. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001062522105043