Collinear and noncollinear ferrimagnetic phases in Mn4N investigated by magneto-optical Kerr spectroscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00371986" target="_blank" >RIV/68407700:21230/23:00371986 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1063/5.0170621" target="_blank" >https://doi.org/10.1063/5.0170621</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0170621" target="_blank" >10.1063/5.0170621</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Collinear and noncollinear ferrimagnetic phases in Mn4N investigated by magneto-optical Kerr spectroscopy
Popis výsledku v původním jazyce
Ferrimagnetic antiperovskite Mn4N has received growing interest due to room-temperature observation of large perpendicular magnetic anisotropy, low saturation magnetization, and ultrafast response to external magnetic fields. Comprehensive understanding of the underlying magnetic structure is instrumental in design and fabrication of computer memory and logic devices. Magneto-optical spectroscopy provides deeper insight into the magnetic and electronic structure than magnetometry. Simulations of a magneto-optical Kerr effect in biaxially strained Mn4N are performed using density functional theory and linear response theory. We consider three ferrimagnetic phases, two collinear and one noncollinear, which have been investigated separately by earlier studies. The simulated spectra are compared to measured magneto-optical data available in recent literature. One of the collinear ferrimagnetic phases is found to be consistent with the measured spectra. We show that an admixture of the noncollinear phase, which is the ground state of unstrained Mn4N, further improves the agreement with measured spectra, and at the same time, it could explain the lower than predicted net moment and magnetic anisotropy observed in thin films on various substrates.
Název v anglickém jazyce
Collinear and noncollinear ferrimagnetic phases in Mn4N investigated by magneto-optical Kerr spectroscopy
Popis výsledku anglicky
Ferrimagnetic antiperovskite Mn4N has received growing interest due to room-temperature observation of large perpendicular magnetic anisotropy, low saturation magnetization, and ultrafast response to external magnetic fields. Comprehensive understanding of the underlying magnetic structure is instrumental in design and fabrication of computer memory and logic devices. Magneto-optical spectroscopy provides deeper insight into the magnetic and electronic structure than magnetometry. Simulations of a magneto-optical Kerr effect in biaxially strained Mn4N are performed using density functional theory and linear response theory. We consider three ferrimagnetic phases, two collinear and one noncollinear, which have been investigated separately by earlier studies. The simulated spectra are compared to measured magneto-optical data available in recent literature. One of the collinear ferrimagnetic phases is found to be consistent with the measured spectra. We show that an admixture of the noncollinear phase, which is the ground state of unstrained Mn4N, further improves the agreement with measured spectra, and at the same time, it could explain the lower than predicted net moment and magnetic anisotropy observed in thin films on various substrates.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Physics
ISSN
0021-8979
e-ISSN
1089-7550
Svazek periodika
134
Číslo periodika v rámci svazku
listopad
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
"203902-1"-"203902-13"
Kód UT WoS článku
001111156000003
EID výsledku v databázi Scopus
2-s2.0-85178384517