Graph Neural Network Empowered Resource Allocation for Connected Autonomous Mobility
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00373613" target="_blank" >RIV/68407700:21230/23:00373613 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/IRC59093.2023.00049" target="_blank" >http://dx.doi.org/10.1109/IRC59093.2023.00049</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IRC59093.2023.00049" target="_blank" >10.1109/IRC59093.2023.00049</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph Neural Network Empowered Resource Allocation for Connected Autonomous Mobility
Popis výsledku v původním jazyce
Autonomous mobility and computations provided for passengers impose a high hardware and energy consumption related costs when deployed locally on connected autonomous vehicle (CAV). Distribution of resources for computation accross the edge of mobile network by means of multi-access edge computing (MEC) allows to reduce the cost of the CAVs. However, the decision on computation offloading and allocation of resources for computing is itself a computationally complex task. Existing works typically do not fully exploit the potential of machine learning by combining novel advances in deep reinforcement learning (DRL) and graph neural networks (GNNs) that are suited for graph structure of the MEC. We propose a novel framework combining GNNs with deep deterministic policy gradient (DDPG) variant of DRL. The proposed concept is tested in environment with simulated gNodeBs, CAVs and execution of actions that simultaneously trade off uplink and processing resources and control the soft deadline buffer. In scenario with one base station and 12 CAVs our approach outperforms commonly used multilayer perceptron DDPG by 59% in terms of failed task ratio metric. Additionally, in scenario with 3 base stations and 25 CAVs, the proposal reaches over 33% for the same metric over round robin (RR) distribution.
Název v anglickém jazyce
Graph Neural Network Empowered Resource Allocation for Connected Autonomous Mobility
Popis výsledku anglicky
Autonomous mobility and computations provided for passengers impose a high hardware and energy consumption related costs when deployed locally on connected autonomous vehicle (CAV). Distribution of resources for computation accross the edge of mobile network by means of multi-access edge computing (MEC) allows to reduce the cost of the CAVs. However, the decision on computation offloading and allocation of resources for computing is itself a computationally complex task. Existing works typically do not fully exploit the potential of machine learning by combining novel advances in deep reinforcement learning (DRL) and graph neural networks (GNNs) that are suited for graph structure of the MEC. We propose a novel framework combining GNNs with deep deterministic policy gradient (DDPG) variant of DRL. The proposed concept is tested in environment with simulated gNodeBs, CAVs and execution of actions that simultaneously trade off uplink and processing resources and control the soft deadline buffer. In scenario with one base station and 12 CAVs our approach outperforms commonly used multilayer perceptron DDPG by 59% in terms of failed task ratio metric. Additionally, in scenario with 3 base stations and 25 CAVs, the proposal reaches over 33% for the same metric over round robin (RR) distribution.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/LUASK22064" target="_blank" >LUASK22064: Prediktivní alokace výpočetních prostředků pro autonomní řízení na hraně sítě</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE Robotic Computing (IEEE IRC 2023)
ISBN
9781665472616
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
260-264
Název nakladatele
IEEE
Místo vydání
Irvine, CA
Místo konání akce
California
Datum konání akce
11. 12. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001195993100043