Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Approaching Collateral Optimization for NISQ and Quantum-Inspired Computing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00381690" target="_blank" >RIV/68407700:21230/23:00381690 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/TQE.2023.3314839" target="_blank" >https://doi.org/10.1109/TQE.2023.3314839</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TQE.2023.3314839" target="_blank" >10.1109/TQE.2023.3314839</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Approaching Collateral Optimization for NISQ and Quantum-Inspired Computing

  • Popis výsledku v původním jazyce

    Collateral optimization refers to the systematic allocation of financial assets to satisfy obligations or secure transactions while simultaneously minimizing costs and optimizing the usage of available resources. This involves assessing the number of characteristics, such as the cost of funding and quality of the underlying assets to ascertain the optimal collateral quantity to be posted to cover exposure arising from a given transaction or a set of transactions. One of the common objectives is to minimize the cost of collateral required to mitigate the risk associated with a particular transaction or a portfolio of transactions while ensuring sufficient protection for the involved parties. Often, this results in a large-scale combinatorial optimization problem. In this study, we initially present a mixed-integer linear programming formulation for the collateral optimization problem, followed by a quadratic unconstrained binary optimization (QUBO) formulation in order to pave the way toward approaching the problem in a hybrid-quantum and noisy intermediate-scale quantum-ready way. We conduct local computational small-scale tests using various software development kits and discuss the behavior of our formulations as well as the potential for performance enhancements. We find that while the QUBO-based approaches fail to find the global optima in the small-scale experiments, they are reasonably close suggesting their potential for large instances. We further survey the recent literature that proposes alternative ways to attack combinatorial optimization problems suitable for collateral optimization.

  • Název v anglickém jazyce

    Approaching Collateral Optimization for NISQ and Quantum-Inspired Computing

  • Popis výsledku anglicky

    Collateral optimization refers to the systematic allocation of financial assets to satisfy obligations or secure transactions while simultaneously minimizing costs and optimizing the usage of available resources. This involves assessing the number of characteristics, such as the cost of funding and quality of the underlying assets to ascertain the optimal collateral quantity to be posted to cover exposure arising from a given transaction or a set of transactions. One of the common objectives is to minimize the cost of collateral required to mitigate the risk associated with a particular transaction or a portfolio of transactions while ensuring sufficient protection for the involved parties. Often, this results in a large-scale combinatorial optimization problem. In this study, we initially present a mixed-integer linear programming formulation for the collateral optimization problem, followed by a quadratic unconstrained binary optimization (QUBO) formulation in order to pave the way toward approaching the problem in a hybrid-quantum and noisy intermediate-scale quantum-ready way. We conduct local computational small-scale tests using various software development kits and discuss the behavior of our formulations as well as the potential for performance enhancements. We find that while the QUBO-based approaches fail to find the global optima in the small-scale experiments, they are reasonably close suggesting their potential for large instances. We further survey the recent literature that proposes alternative ways to attack combinatorial optimization problems suitable for collateral optimization.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Quantum Engineering

  • ISSN

    2689-1808

  • e-ISSN

    2689-1808

  • Svazek periodika

    4

  • Číslo periodika v rámci svazku

    October

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

  • Kód UT WoS článku

    001363364800003

  • EID výsledku v databázi Scopus

    2-s2.0-85171599377