Large-scale Ridesharing DARP Instances Based on Real Travel Demand
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00382177" target="_blank" >RIV/68407700:21230/23:00382177 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ITSC57777.2023.10422146" target="_blank" >https://doi.org/10.1109/ITSC57777.2023.10422146</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ITSC57777.2023.10422146" target="_blank" >10.1109/ITSC57777.2023.10422146</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Large-scale Ridesharing DARP Instances Based on Real Travel Demand
Popis výsledku v původním jazyce
Accurately predicting the real-life performance of algorithms solving the Dial-a-Ride Problem (DARP) in the context of Mobility on Demand (MoD) systems with ridesharing requires evaluating them on representative instances. However, the benchmarking of state-of-the-art DARP solution methods has been limited to small, artificial instances or outdated non-public instances, hindering direct comparisons. With the rise of large MoD systems and the availability of open travel demand datasets for many US cities, there is now an opportunity to evaluate these algorithms on standardized, realistic, and repre-sentative instances. Despite the significant challenges involved in processing obfuscated and diverse datasets, we have developed a methodology using which we have created a comprehensive set of large-scale demand instances based on real-world data3. These instances cover diverse use cases, one of which is demon-strated in an evaluation of two established DARP methods: the insertion heuristic and optimal vehicle-group assignment method. We publish the full results of both methods in a standardized format. The results show significant differences between areas in all measured quantities, emphasizing the importance of evaluating methods across different cities.
Název v anglickém jazyce
Large-scale Ridesharing DARP Instances Based on Real Travel Demand
Popis výsledku anglicky
Accurately predicting the real-life performance of algorithms solving the Dial-a-Ride Problem (DARP) in the context of Mobility on Demand (MoD) systems with ridesharing requires evaluating them on representative instances. However, the benchmarking of state-of-the-art DARP solution methods has been limited to small, artificial instances or outdated non-public instances, hindering direct comparisons. With the rise of large MoD systems and the availability of open travel demand datasets for many US cities, there is now an opportunity to evaluate these algorithms on standardized, realistic, and repre-sentative instances. Despite the significant challenges involved in processing obfuscated and diverse datasets, we have developed a methodology using which we have created a comprehensive set of large-scale demand instances based on real-world data3. These instances cover diverse use cases, one of which is demon-strated in an evaluation of two established DARP methods: the insertion heuristic and optimal vehicle-group assignment method. We publish the full results of both methods in a standardized format. The results show significant differences between areas in all measured quantities, emphasizing the importance of evaluating methods across different cities.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 26th IEEE International Conference on Intelligent Transportation Systems
ISBN
979-8-3503-9946-2
ISSN
2153-0009
e-ISSN
—
Počet stran výsledku
8
Strana od-do
2750-2757
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Brighton
Místo konání akce
Bilbao
Datum konání akce
24. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001178996702113