Machine Learning for SAST: A Lightweight and Adaptable Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00373626" target="_blank" >RIV/68407700:21230/24:00373626 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-51482-1_5" target="_blank" >https://doi.org/10.1007/978-3-031-51482-1_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-51482-1_5" target="_blank" >10.1007/978-3-031-51482-1_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning for SAST: A Lightweight and Adaptable Approach
Popis výsledku v původním jazyce
n this paper, we summarize a novel method for machine learning-based static application security testing (SAST), which was devised as part of a larger study funded by Germany’s Federal Office for Information Security (BSI). SAST describes the practice of applying static analysis techniques to program code on the premise of detecting security-critical software defects early during the development process. In the past, this was done by using rule-based approaches, where the program code is checked against a set of rules that define some pattern, representative of a defect. Recently, an increasing influx of publications can be observed that discuss the application of machine learning methods to this problem. Our method poses a lightweight approach to this concept, comprising two main contributions: Firstly, we present a novel control-flow based embedding method for program code. Embedding the code into a metric space is a necessity in order to apply machine learning techniques to the problem of SAST. Secondly, we describe how this method can be applied to generate expressive, yet simple, models of some unwanted behavior. We have implemented these methods in a prototype for the C and C++ programming languages. Using tenfold cross-validation, we show that our prototype is capable of effectively predicting the location and type of software defects in previously unseen code.
Název v anglickém jazyce
Machine Learning for SAST: A Lightweight and Adaptable Approach
Popis výsledku anglicky
n this paper, we summarize a novel method for machine learning-based static application security testing (SAST), which was devised as part of a larger study funded by Germany’s Federal Office for Information Security (BSI). SAST describes the practice of applying static analysis techniques to program code on the premise of detecting security-critical software defects early during the development process. In the past, this was done by using rule-based approaches, where the program code is checked against a set of rules that define some pattern, representative of a defect. Recently, an increasing influx of publications can be observed that discuss the application of machine learning methods to this problem. Our method poses a lightweight approach to this concept, comprising two main contributions: Firstly, we present a novel control-flow based embedding method for program code. Embedding the code into a metric space is a necessity in order to apply machine learning techniques to the problem of SAST. Secondly, we describe how this method can be applied to generate expressive, yet simple, models of some unwanted behavior. We have implemented these methods in a prototype for the C and C++ programming languages. Using tenfold cross-validation, we show that our prototype is capable of effectively predicting the location and type of software defects in previously unseen code.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
978-3-031-51481-4
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
20
Strana od-do
85-104
Název nakladatele
Springer-Verlag
Místo vydání
Berlin
Místo konání akce
The Hague
Datum konání akce
25. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001208360100005