Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cepstral Coefficients Effectiveness for Gunshot Classifying

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00374531" target="_blank" >RIV/68407700:21230/24:00374531 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1088/1361-6501/ad3c5d" target="_blank" >https://doi.org/10.1088/1361-6501/ad3c5d</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6501/ad3c5d" target="_blank" >10.1088/1361-6501/ad3c5d</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cepstral Coefficients Effectiveness for Gunshot Classifying

  • Popis výsledku v původním jazyce

    This paper analyses the efficiency of various frequency cepstral coefficients (fCC) in a non-speech application, specifically in classifying acoustic impulse events - gunshots. There are various methods for such event identification available. The majority of these methods are based on time or frequency domain algorithms. However, both of these domains have their limitations and disadvantages. In this article, an fCC, combining the advantages of both frequency and time domains, is presented and analyzed. These originally speech features showed potential not only in speech-related applications but also in other acoustic applications. The comparison of the classification efficiency based on features obtained using four different fCC, namely Mel-frequency Cepstral Coefficients (MFCC), Inverse Mel-frequency Cepstral Coefficients (IMFCC), Linear-frequency Cepstral Coefficients (LFCC), and Gammatone-frequency Cepstral Coefficients (GTCC) is presented. An optimal frame length for an fCC calculation is also explored. Various gunshots from short guns and rifle guns of different calibers and multiple acoustic impulse events, similar to the gunshots, to represent false alarms are used. More than six hundred acoustic events records have been acquired and used for training and validation of two designed classifiers, Support Vector Machine, and Neural Network. Accuracy, Recall and Matthew's correlation coefficient measure the classification success rate. The results reveal the superiority of GFCC to other analyzed methods.

  • Název v anglickém jazyce

    Cepstral Coefficients Effectiveness for Gunshot Classifying

  • Popis výsledku anglicky

    This paper analyses the efficiency of various frequency cepstral coefficients (fCC) in a non-speech application, specifically in classifying acoustic impulse events - gunshots. There are various methods for such event identification available. The majority of these methods are based on time or frequency domain algorithms. However, both of these domains have their limitations and disadvantages. In this article, an fCC, combining the advantages of both frequency and time domains, is presented and analyzed. These originally speech features showed potential not only in speech-related applications but also in other acoustic applications. The comparison of the classification efficiency based on features obtained using four different fCC, namely Mel-frequency Cepstral Coefficients (MFCC), Inverse Mel-frequency Cepstral Coefficients (IMFCC), Linear-frequency Cepstral Coefficients (LFCC), and Gammatone-frequency Cepstral Coefficients (GTCC) is presented. An optimal frame length for an fCC calculation is also explored. Various gunshots from short guns and rifle guns of different calibers and multiple acoustic impulse events, similar to the gunshots, to represent false alarms are used. More than six hundred acoustic events records have been acquired and used for training and validation of two designed classifiers, Support Vector Machine, and Neural Network. Accuracy, Recall and Matthew's correlation coefficient measure the classification success rate. The results reveal the superiority of GFCC to other analyzed methods.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Measurement Science and Technology

  • ISSN

    0957-0233

  • e-ISSN

    1361-6501

  • Svazek periodika

    35

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    1-11

  • Kód UT WoS článku

    001204907200001

  • EID výsledku v databázi Scopus

    2-s2.0-85190943127