Cepstral Coefficients Effectiveness for Gunshot Classifying
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00374531" target="_blank" >RIV/68407700:21230/24:00374531 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1361-6501/ad3c5d" target="_blank" >https://doi.org/10.1088/1361-6501/ad3c5d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6501/ad3c5d" target="_blank" >10.1088/1361-6501/ad3c5d</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cepstral Coefficients Effectiveness for Gunshot Classifying
Popis výsledku v původním jazyce
This paper analyses the efficiency of various frequency cepstral coefficients (fCC) in a non-speech application, specifically in classifying acoustic impulse events - gunshots. There are various methods for such event identification available. The majority of these methods are based on time or frequency domain algorithms. However, both of these domains have their limitations and disadvantages. In this article, an fCC, combining the advantages of both frequency and time domains, is presented and analyzed. These originally speech features showed potential not only in speech-related applications but also in other acoustic applications. The comparison of the classification efficiency based on features obtained using four different fCC, namely Mel-frequency Cepstral Coefficients (MFCC), Inverse Mel-frequency Cepstral Coefficients (IMFCC), Linear-frequency Cepstral Coefficients (LFCC), and Gammatone-frequency Cepstral Coefficients (GTCC) is presented. An optimal frame length for an fCC calculation is also explored. Various gunshots from short guns and rifle guns of different calibers and multiple acoustic impulse events, similar to the gunshots, to represent false alarms are used. More than six hundred acoustic events records have been acquired and used for training and validation of two designed classifiers, Support Vector Machine, and Neural Network. Accuracy, Recall and Matthew's correlation coefficient measure the classification success rate. The results reveal the superiority of GFCC to other analyzed methods.
Název v anglickém jazyce
Cepstral Coefficients Effectiveness for Gunshot Classifying
Popis výsledku anglicky
This paper analyses the efficiency of various frequency cepstral coefficients (fCC) in a non-speech application, specifically in classifying acoustic impulse events - gunshots. There are various methods for such event identification available. The majority of these methods are based on time or frequency domain algorithms. However, both of these domains have their limitations and disadvantages. In this article, an fCC, combining the advantages of both frequency and time domains, is presented and analyzed. These originally speech features showed potential not only in speech-related applications but also in other acoustic applications. The comparison of the classification efficiency based on features obtained using four different fCC, namely Mel-frequency Cepstral Coefficients (MFCC), Inverse Mel-frequency Cepstral Coefficients (IMFCC), Linear-frequency Cepstral Coefficients (LFCC), and Gammatone-frequency Cepstral Coefficients (GTCC) is presented. An optimal frame length for an fCC calculation is also explored. Various gunshots from short guns and rifle guns of different calibers and multiple acoustic impulse events, similar to the gunshots, to represent false alarms are used. More than six hundred acoustic events records have been acquired and used for training and validation of two designed classifiers, Support Vector Machine, and Neural Network. Accuracy, Recall and Matthew's correlation coefficient measure the classification success rate. The results reveal the superiority of GFCC to other analyzed methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Measurement Science and Technology
ISSN
0957-0233
e-ISSN
1361-6501
Svazek periodika
35
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
001204907200001
EID výsledku v databázi Scopus
2-s2.0-85190943127