Autonomous Drone Racing: A Survey
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00375192" target="_blank" >RIV/68407700:21230/24:00375192 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TRO.2024.3400838" target="_blank" >https://doi.org/10.1109/TRO.2024.3400838</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TRO.2024.3400838" target="_blank" >10.1109/TRO.2024.3400838</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Autonomous Drone Racing: A Survey
Popis výsledku v původním jazyce
Over the last decade, the use of autonomous drone systems for surveying, search and rescue, or last-mile delivery has increased exponentially. With the rise of these applications comes the need for highly robust, safety-critical algorithms that can operate drones in complex and uncertain environments. Additionally, flying fast enables drones to cover more ground, increasing productivity and further strengthening their use case. One proxy for developing algorithms used in high-speed navigation is the task of autonomous drone racing, where researchers program drones to fly through a sequence of gates and avoid obstacles as quickly as possible using onboard sensors and limited computational power. Speeds and accelerations exceed over 80 kph and 4 g, respectively, raising significant challenges across perception, planning, control, and state estimation. To achieve maximum performance, systems require real-time algorithms that are robust to motion blur, high dynamic range, model uncertainties, aerodynamic disturbances, and often unpredictable opponents. This survey covers the progression of autonomous drone racing across model-based and learning-based approaches. We provide an overview of the field, its evolution over the years, and conclude with the biggest challenges and open questions to be faced in the future.
Název v anglickém jazyce
Autonomous Drone Racing: A Survey
Popis výsledku anglicky
Over the last decade, the use of autonomous drone systems for surveying, search and rescue, or last-mile delivery has increased exponentially. With the rise of these applications comes the need for highly robust, safety-critical algorithms that can operate drones in complex and uncertain environments. Additionally, flying fast enables drones to cover more ground, increasing productivity and further strengthening their use case. One proxy for developing algorithms used in high-speed navigation is the task of autonomous drone racing, where researchers program drones to fly through a sequence of gates and avoid obstacles as quickly as possible using onboard sensors and limited computational power. Speeds and accelerations exceed over 80 kph and 4 g, respectively, raising significant challenges across perception, planning, control, and state estimation. To achieve maximum performance, systems require real-time algorithms that are robust to motion blur, high dynamic range, model uncertainties, aerodynamic disturbances, and often unpredictable opponents. This survey covers the progression of autonomous drone racing across model-based and learning-based approaches. We provide an overview of the field, its evolution over the years, and conclude with the biggest challenges and open questions to be faced in the future.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/GM23-06162M" target="_blank" >GM23-06162M: TOPFLIGHT: Plánování trajektorií a misí agilních vzdušných robotů v prostředí s překážkami</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Robotics
ISSN
1552-3098
e-ISSN
1941-0468
Svazek periodika
40
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
3044-3067
Kód UT WoS článku
001241567100001
EID výsledku v databázi Scopus
2-s2.0-85193258792