Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using Constraint Propagation to Bound Linear Programs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00375629" target="_blank" >RIV/68407700:21230/24:00375629 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1613/jair.1.15604" target="_blank" >https://doi.org/10.1613/jair.1.15604</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1613/jair.1.15604" target="_blank" >10.1613/jair.1.15604</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using Constraint Propagation to Bound Linear Programs

  • Popis výsledku v původním jazyce

    We present an approach to compute bounds on the optimal value of linear programs based on constraint propagation. Given a feasible dual solution, we apply constraint propagation to the complementary slackness conditions and, if propagation succeeds to prove these conditions infeasible, the infeasibility certificate (in the sense of Farkas’ lemma) is reconstructed from the propagation history. This certificate is a dual-improving direction, which allows us to improve the bound. As constraint propagation need not always detect infeasibility of a linear inequality system, the method is not guaranteed to converge to a global solution of the linear program but only to an upper bound, whose tightness depends on the structure of the program and the used propagation method. The approach is suited for large sparse linear programs (such as LP relaxations of combinatorial optimization problems), for which the classical LP algorithms may be infeasible, if only for their super-linear space complexity. The approach can be seen as a generalization of the Virtual Arc Consistency (VAC) algorithm to bound the LP relaxation of the Weighted CSP (WCSP). We newly apply it to the LP relaxation of the Weighted Max-SAT problem, experimentally showing that the obtained bounds are often not far from optima of the relaxation and proving that they are exact for known tractable subclasses of Weighted Max-SAT.

  • Název v anglickém jazyce

    Using Constraint Propagation to Bound Linear Programs

  • Popis výsledku anglicky

    We present an approach to compute bounds on the optimal value of linear programs based on constraint propagation. Given a feasible dual solution, we apply constraint propagation to the complementary slackness conditions and, if propagation succeeds to prove these conditions infeasible, the infeasibility certificate (in the sense of Farkas’ lemma) is reconstructed from the propagation history. This certificate is a dual-improving direction, which allows us to improve the bound. As constraint propagation need not always detect infeasibility of a linear inequality system, the method is not guaranteed to converge to a global solution of the linear program but only to an upper bound, whose tightness depends on the structure of the program and the used propagation method. The approach is suited for large sparse linear programs (such as LP relaxations of combinatorial optimization problems), for which the classical LP algorithms may be infeasible, if only for their super-linear space complexity. The approach can be seen as a generalization of the Virtual Arc Consistency (VAC) algorithm to bound the LP relaxation of the Weighted CSP (WCSP). We newly apply it to the LP relaxation of the Weighted Max-SAT problem, experimentally showing that the obtained bounds are often not far from optima of the relaxation and proving that they are exact for known tractable subclasses of Weighted Max-SAT.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Artificial Intelligence Research

  • ISSN

    1076-9757

  • e-ISSN

    1943-5037

  • Svazek periodika

    80

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    54

  • Strana od-do

    665-718

  • Kód UT WoS článku

    001457267900001

  • EID výsledku v databázi Scopus

    2-s2.0-85197346347