Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploring radiation damage in (Hf0.2Zr0.2Ta0.2Ti0.2Nb0.2)C high-entropy carbide ceramic: Integrating experimental and atomistic investigations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00375770" target="_blank" >RIV/68407700:21230/24:00375770 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ijrmhm.2024.106755" target="_blank" >https://doi.org/10.1016/j.ijrmhm.2024.106755</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijrmhm.2024.106755" target="_blank" >10.1016/j.ijrmhm.2024.106755</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploring radiation damage in (Hf0.2Zr0.2Ta0.2Ti0.2Nb0.2)C high-entropy carbide ceramic: Integrating experimental and atomistic investigations

  • Popis výsledku v původním jazyce

    This study investigates the intricate mechanisms that govern irradiation damage in high-entropy ceramic materials. Specifically, we synthesized (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy carbide ceramics (HECC) with a single-phase rock-salt structure using spark plasma sintering. These ceramics were then subjected to irradiation with 1.08 MeV C ions, resulting in a dose of 7.2 dpa (dpa: displacements per atom) at both room temperature (RT) and 500 °C. To understand the resulting damage structure, we analyzed bulk irradiated HECC samples using Grazing Incidence X-ray Diffraction (GIXRD) and Transmission Electron Microscope (TEM) at both irradiation temperatures. GIXRD analysis revealed an average tensile strain out-of-plane of 0.16% for RT irradiation and 0.14% for irradiation at 500 °C. In addition, TEM analysis identified a buried damaged band, approximately 970 nm thick, under both irradiation temperatures. By employing the bright field TEM imaging technique under kinematic two-beam conditions, dislocation loops of both a/3 <111>{111} and a/2 <110>{110} types within the damaged band were observed. Furthermore, our analysis indicated an increase in the average size of the total dislocation loops within the band from 1.2 nm to 1.4 nm as the density decreased. Importantly, no amorphization, precipitates, or voids were detected in the damaged band under both irradiation temperatures. Density functional theory (DFT) simulations indicated that carbon predominantly resides in <110>split interstitial sites causing lattice expansion, while vacancies, particularly Nb, induced compression along the c-axis. Carbon atoms tend to bond when collectively present in the <110> split interstitial sites, contributing to the formation of interstitial loops.

  • Název v anglickém jazyce

    Exploring radiation damage in (Hf0.2Zr0.2Ta0.2Ti0.2Nb0.2)C high-entropy carbide ceramic: Integrating experimental and atomistic investigations

  • Popis výsledku anglicky

    This study investigates the intricate mechanisms that govern irradiation damage in high-entropy ceramic materials. Specifically, we synthesized (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy carbide ceramics (HECC) with a single-phase rock-salt structure using spark plasma sintering. These ceramics were then subjected to irradiation with 1.08 MeV C ions, resulting in a dose of 7.2 dpa (dpa: displacements per atom) at both room temperature (RT) and 500 °C. To understand the resulting damage structure, we analyzed bulk irradiated HECC samples using Grazing Incidence X-ray Diffraction (GIXRD) and Transmission Electron Microscope (TEM) at both irradiation temperatures. GIXRD analysis revealed an average tensile strain out-of-plane of 0.16% for RT irradiation and 0.14% for irradiation at 500 °C. In addition, TEM analysis identified a buried damaged band, approximately 970 nm thick, under both irradiation temperatures. By employing the bright field TEM imaging technique under kinematic two-beam conditions, dislocation loops of both a/3 <111>{111} and a/2 <110>{110} types within the damaged band were observed. Furthermore, our analysis indicated an increase in the average size of the total dislocation loops within the band from 1.2 nm to 1.4 nm as the density decreased. Importantly, no amorphization, precipitates, or voids were detected in the damaged band under both irradiation temperatures. Density functional theory (DFT) simulations indicated that carbon predominantly resides in <110>split interstitial sites causing lattice expansion, while vacancies, particularly Nb, induced compression along the c-axis. Carbon atoms tend to bond when collectively present in the <110> split interstitial sites, contributing to the formation of interstitial loops.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotika a pokročilá průmyslová výroba</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Refractory Metals and Hard Materials

  • ISSN

    0263-4368

  • e-ISSN

    2213-3917

  • Svazek periodika

    123

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

    001262879500001

  • EID výsledku v databázi Scopus

    2-s2.0-85196772572