Single-Image Deblurring, Trajectory and Shape Recovery of Fast Moving Objects with Denoising Diffusion Probabilistic Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376639" target="_blank" >RIV/68407700:21230/24:00376639 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/WACV57701.2024.00671" target="_blank" >http://dx.doi.org/10.1109/WACV57701.2024.00671</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WACV57701.2024.00671" target="_blank" >10.1109/WACV57701.2024.00671</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Single-Image Deblurring, Trajectory and Shape Recovery of Fast Moving Objects with Denoising Diffusion Probabilistic Models
Popis výsledku v původním jazyce
Blurry appearance of fast moving objects in video frames was successfully used to reconstruct the object appearance and motion in both 2D and 3D domains. The proposed method addresses the novel, severely ill-posed, task of single-image fast moving object deblurring, shape, and trajectory recovery--previous approaches require at least three consecutive video frames. Given a single image, the method outputs the object 2D appearance and position in a series of sub-frames as if captured by a high-speed camera (ie temporal super-resolution). The proposed SI-DDPM-FMO method is trained end-to-end on a synthetic dataset with various moving objects, yet it generalizes well to real-world data from several publicly available datasets. SI-DDPM-FMO performs similarly to or better than recent multi-frame methods and a carefully designed baseline method.
Název v anglickém jazyce
Single-Image Deblurring, Trajectory and Shape Recovery of Fast Moving Objects with Denoising Diffusion Probabilistic Models
Popis výsledku anglicky
Blurry appearance of fast moving objects in video frames was successfully used to reconstruct the object appearance and motion in both 2D and 3D domains. The proposed method addresses the novel, severely ill-posed, task of single-image fast moving object deblurring, shape, and trajectory recovery--previous approaches require at least three consecutive video frames. Given a single image, the method outputs the object 2D appearance and position in a series of sub-frames as if captured by a high-speed camera (ie temporal super-resolution). The proposed SI-DDPM-FMO method is trained end-to-end on a synthetic dataset with various moving objects, yet it generalizes well to real-world data from several publicly available datasets. SI-DDPM-FMO performs similarly to or better than recent multi-frame methods and a carefully designed baseline method.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
ISBN
979-8-3503-1892-0
ISSN
2472-6737
e-ISSN
2642-9381
Počet stran výsledku
10
Strana od-do
6843-6852
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Waikoloa, HI, USA
Datum konání akce
4. 1. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001222964606095