Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Towards Safe Mid-Air Drone Interception: Strategies for Tracking & Capture

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376946" target="_blank" >RIV/68407700:21230/24:00376946 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/LRA.2024.3451768" target="_blank" >https://doi.org/10.1109/LRA.2024.3451768</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/LRA.2024.3451768" target="_blank" >10.1109/LRA.2024.3451768</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Towards Safe Mid-Air Drone Interception: Strategies for Tracking & Capture

  • Popis výsledku v původním jazyce

    A unique approach for mid-air autonomous aerial interception of non-cooperating Uncrewed Aerial Vehicles (UAVs) by a flying robot equipped with a net is presented in this paper. A novel interception guidance method called Fast Response Proportional Navigation (FRPN) is proposed, designed to catch agile maneuvering targets while relying on onboard state estimation and tracking. The proposed method is compared with state-of-the-art approaches in simulations using different target trajectories of varying complexity, comprising a large amount of flight data. FRPN demonstrates the shortest response time and the highest number of interceptions, which are key parameters for agile interception. To ensure a robust transition from theory and simulation to real-world implementation, the approach avoids overfitting to specific assumptions about the target and aims to intercept a target following an unknown, general trajectory. Furthermore, the paper identifies several often overlooked problems related to tracking and estimating the target's state that can significantly affect the overall performance of the system. It proposes a novel state estimation filter based on the Interacting Multiple Model (IMM) filter and a new measurement model. Simulated experiments show that the proposed solution significantly improves estimation accuracy over commonly employed Kalman Filter approaches when dealing with general trajectories. Based on these results, the proposed filtering and guidance methods are used to implement a complete autonomous interception system, which is thoroughly evaluated in realistic simulations and tested in real-world experiments with a maneuvering target, surpassing the performance of any state-of-the-art solution.

  • Název v anglickém jazyce

    Towards Safe Mid-Air Drone Interception: Strategies for Tracking & Capture

  • Popis výsledku anglicky

    A unique approach for mid-air autonomous aerial interception of non-cooperating Uncrewed Aerial Vehicles (UAVs) by a flying robot equipped with a net is presented in this paper. A novel interception guidance method called Fast Response Proportional Navigation (FRPN) is proposed, designed to catch agile maneuvering targets while relying on onboard state estimation and tracking. The proposed method is compared with state-of-the-art approaches in simulations using different target trajectories of varying complexity, comprising a large amount of flight data. FRPN demonstrates the shortest response time and the highest number of interceptions, which are key parameters for agile interception. To ensure a robust transition from theory and simulation to real-world implementation, the approach avoids overfitting to specific assumptions about the target and aims to intercept a target following an unknown, general trajectory. Furthermore, the paper identifies several often overlooked problems related to tracking and estimating the target's state that can significantly affect the overall performance of the system. It proposes a novel state estimation filter based on the Interacting Multiple Model (IMM) filter and a new measurement model. Simulated experiments show that the proposed solution significantly improves estimation accuracy over commonly employed Kalman Filter approaches when dealing with general trajectories. Based on these results, the proposed filtering and guidance methods are used to implement a complete autonomous interception system, which is thoroughly evaluated in realistic simulations and tested in real-world experiments with a maneuvering target, surpassing the performance of any state-of-the-art solution.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Robotics and Automation Letters

  • ISSN

    2377-3766

  • e-ISSN

    2377-3766

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    8810-8817

  • Kód UT WoS článku

    001311225900002

  • EID výsledku v databázi Scopus

    2-s2.0-85202723442