Towards Safe Mid-Air Drone Interception: Strategies for Tracking & Capture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376946" target="_blank" >RIV/68407700:21230/24:00376946 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/LRA.2024.3451768" target="_blank" >https://doi.org/10.1109/LRA.2024.3451768</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LRA.2024.3451768" target="_blank" >10.1109/LRA.2024.3451768</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Safe Mid-Air Drone Interception: Strategies for Tracking & Capture
Popis výsledku v původním jazyce
A unique approach for mid-air autonomous aerial interception of non-cooperating Uncrewed Aerial Vehicles (UAVs) by a flying robot equipped with a net is presented in this paper. A novel interception guidance method called Fast Response Proportional Navigation (FRPN) is proposed, designed to catch agile maneuvering targets while relying on onboard state estimation and tracking. The proposed method is compared with state-of-the-art approaches in simulations using different target trajectories of varying complexity, comprising a large amount of flight data. FRPN demonstrates the shortest response time and the highest number of interceptions, which are key parameters for agile interception. To ensure a robust transition from theory and simulation to real-world implementation, the approach avoids overfitting to specific assumptions about the target and aims to intercept a target following an unknown, general trajectory. Furthermore, the paper identifies several often overlooked problems related to tracking and estimating the target's state that can significantly affect the overall performance of the system. It proposes a novel state estimation filter based on the Interacting Multiple Model (IMM) filter and a new measurement model. Simulated experiments show that the proposed solution significantly improves estimation accuracy over commonly employed Kalman Filter approaches when dealing with general trajectories. Based on these results, the proposed filtering and guidance methods are used to implement a complete autonomous interception system, which is thoroughly evaluated in realistic simulations and tested in real-world experiments with a maneuvering target, surpassing the performance of any state-of-the-art solution.
Název v anglickém jazyce
Towards Safe Mid-Air Drone Interception: Strategies for Tracking & Capture
Popis výsledku anglicky
A unique approach for mid-air autonomous aerial interception of non-cooperating Uncrewed Aerial Vehicles (UAVs) by a flying robot equipped with a net is presented in this paper. A novel interception guidance method called Fast Response Proportional Navigation (FRPN) is proposed, designed to catch agile maneuvering targets while relying on onboard state estimation and tracking. The proposed method is compared with state-of-the-art approaches in simulations using different target trajectories of varying complexity, comprising a large amount of flight data. FRPN demonstrates the shortest response time and the highest number of interceptions, which are key parameters for agile interception. To ensure a robust transition from theory and simulation to real-world implementation, the approach avoids overfitting to specific assumptions about the target and aims to intercept a target following an unknown, general trajectory. Furthermore, the paper identifies several often overlooked problems related to tracking and estimating the target's state that can significantly affect the overall performance of the system. It proposes a novel state estimation filter based on the Interacting Multiple Model (IMM) filter and a new measurement model. Simulated experiments show that the proposed solution significantly improves estimation accuracy over commonly employed Kalman Filter approaches when dealing with general trajectories. Based on these results, the proposed filtering and guidance methods are used to implement a complete autonomous interception system, which is thoroughly evaluated in realistic simulations and tested in real-world experiments with a maneuvering target, surpassing the performance of any state-of-the-art solution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Robotics and Automation Letters
ISSN
2377-3766
e-ISSN
2377-3766
Svazek periodika
9
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
8810-8817
Kód UT WoS článku
001311225900002
EID výsledku v databázi Scopus
2-s2.0-85202723442