Machine-Learning-Based Optimal Cooperating Node Selection for Internet of Underwater Things
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00378214" target="_blank" >RIV/68407700:21230/24:00378214 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/JIOT.2024.3381834" target="_blank" >https://doi.org/10.1109/JIOT.2024.3381834</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JIOT.2024.3381834" target="_blank" >10.1109/JIOT.2024.3381834</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine-Learning-Based Optimal Cooperating Node Selection for Internet of Underwater Things
Popis výsledku v původním jazyce
Multihop communication has gained prominence within the realm of the Internet of Underwater Things (IoUT) owing to its exceptional reliability amidst the challenges posed by the underwater acoustic environment. Despite this, the persistence of limitations caused by propagation delay, high collision rate, and limited energy in underwater communication remains, representing the most formidable hurdles in ensuring the successful transmission of data gathered by sensor nodes. To address these challenges, we employ a machine learning (ML)-based optimal cooperating node selection for each hop, considering the Shortest propagation delay, minimal residual Energy, and a low Collision rate (referred to as SEC). For this purpose, we initially assemble the sensor nodes to create a list of cooperative nodes, considering the aspect of SEC. Then, using an assembled list of cooperating sensor nodes, we employ ML-based algorithms, such as reinforcement learning (RL-SEC), deep Q-networks (DQN-SEC), and deep deterministic policy gradient (DDPG-SEC), to predict the optimal cooperating node for each hop. The simulation results of the DDPG-SEC demonstrate a significant improvement of approximately 56% when compared with RL-SEC, DQN-SEC, and other state-of-the-art techniques.
Název v anglickém jazyce
Machine-Learning-Based Optimal Cooperating Node Selection for Internet of Underwater Things
Popis výsledku anglicky
Multihop communication has gained prominence within the realm of the Internet of Underwater Things (IoUT) owing to its exceptional reliability amidst the challenges posed by the underwater acoustic environment. Despite this, the persistence of limitations caused by propagation delay, high collision rate, and limited energy in underwater communication remains, representing the most formidable hurdles in ensuring the successful transmission of data gathered by sensor nodes. To address these challenges, we employ a machine learning (ML)-based optimal cooperating node selection for each hop, considering the Shortest propagation delay, minimal residual Energy, and a low Collision rate (referred to as SEC). For this purpose, we initially assemble the sensor nodes to create a list of cooperative nodes, considering the aspect of SEC. Then, using an assembled list of cooperating sensor nodes, we employ ML-based algorithms, such as reinforcement learning (RL-SEC), deep Q-networks (DQN-SEC), and deep deterministic policy gradient (DDPG-SEC), to predict the optimal cooperating node for each hop. The simulation results of the DDPG-SEC demonstrate a significant improvement of approximately 56% when compared with RL-SEC, DQN-SEC, and other state-of-the-art techniques.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Internet of Things Journal
ISSN
2327-4662
e-ISSN
2327-4662
Svazek periodika
11
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
22471-22482
Kód UT WoS článku
001242362600125
EID výsledku v databázi Scopus
2-s2.0-85189177113