Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine-Learning-Based Optimal Cooperating Node Selection for Internet of Underwater Things

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00378214" target="_blank" >RIV/68407700:21230/24:00378214 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/JIOT.2024.3381834" target="_blank" >https://doi.org/10.1109/JIOT.2024.3381834</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JIOT.2024.3381834" target="_blank" >10.1109/JIOT.2024.3381834</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine-Learning-Based Optimal Cooperating Node Selection for Internet of Underwater Things

  • Popis výsledku v původním jazyce

    Multihop communication has gained prominence within the realm of the Internet of Underwater Things (IoUT) owing to its exceptional reliability amidst the challenges posed by the underwater acoustic environment. Despite this, the persistence of limitations caused by propagation delay, high collision rate, and limited energy in underwater communication remains, representing the most formidable hurdles in ensuring the successful transmission of data gathered by sensor nodes. To address these challenges, we employ a machine learning (ML)-based optimal cooperating node selection for each hop, considering the Shortest propagation delay, minimal residual Energy, and a low Collision rate (referred to as SEC). For this purpose, we initially assemble the sensor nodes to create a list of cooperative nodes, considering the aspect of SEC. Then, using an assembled list of cooperating sensor nodes, we employ ML-based algorithms, such as reinforcement learning (RL-SEC), deep Q-networks (DQN-SEC), and deep deterministic policy gradient (DDPG-SEC), to predict the optimal cooperating node for each hop. The simulation results of the DDPG-SEC demonstrate a significant improvement of approximately 56% when compared with RL-SEC, DQN-SEC, and other state-of-the-art techniques.

  • Název v anglickém jazyce

    Machine-Learning-Based Optimal Cooperating Node Selection for Internet of Underwater Things

  • Popis výsledku anglicky

    Multihop communication has gained prominence within the realm of the Internet of Underwater Things (IoUT) owing to its exceptional reliability amidst the challenges posed by the underwater acoustic environment. Despite this, the persistence of limitations caused by propagation delay, high collision rate, and limited energy in underwater communication remains, representing the most formidable hurdles in ensuring the successful transmission of data gathered by sensor nodes. To address these challenges, we employ a machine learning (ML)-based optimal cooperating node selection for each hop, considering the Shortest propagation delay, minimal residual Energy, and a low Collision rate (referred to as SEC). For this purpose, we initially assemble the sensor nodes to create a list of cooperative nodes, considering the aspect of SEC. Then, using an assembled list of cooperating sensor nodes, we employ ML-based algorithms, such as reinforcement learning (RL-SEC), deep Q-networks (DQN-SEC), and deep deterministic policy gradient (DDPG-SEC), to predict the optimal cooperating node for each hop. The simulation results of the DDPG-SEC demonstrate a significant improvement of approximately 56% when compared with RL-SEC, DQN-SEC, and other state-of-the-art techniques.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Internet of Things Journal

  • ISSN

    2327-4662

  • e-ISSN

    2327-4662

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    22471-22482

  • Kód UT WoS článku

    001242362600125

  • EID výsledku v databázi Scopus

    2-s2.0-85189177113