Robust Classification of PD Sources Using Deep Learning and Signal Processing Techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00378780" target="_blank" >RIV/68407700:21230/24:00378780 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/Diagnostika61830.2024.10693892" target="_blank" >https://doi.org/10.1109/Diagnostika61830.2024.10693892</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/Diagnostika61830.2024.10693892" target="_blank" >10.1109/Diagnostika61830.2024.10693892</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Classification of PD Sources Using Deep Learning and Signal Processing Techniques
Popis výsledku v původním jazyce
Partial discharge (PD) pattern recognition technologies are highly valuable for the predictive maintenance and diagnosis of electrical insulation systems. PD signals are generated when the voltage across the cavity embedded in the insulation system exceeds the PD inception voltage. These signals are low-energy, high-frequency, and stochastic, making analysis extremely challenging since common signal processing methods cannot analyze and interpret their transient, non-stationary characteristics. It is crucial to address PD pattern recognition with a comprehensive strategy that includes collecting PD databases, feature extraction, and applying proper machine learning models. Using cutting-edge PD signal processing techniques and deep learning, PD patterns could be successfully analyzed and interpreted, resulting in the early identification of PD sources inside insulation and reducing the likelihood of system failure. The aim of the paper is to investigate and evaluate various methods to recognize partial discharge (PD) signals as single PD source (SPS) or double PD sources (DPS). Wavelet Analysis, Short-Time Fourier Transform (STFT), Wigner-Ville Distribution (WVD), Empirical Mode Decomposition (EMD), and Higher-Order Statistics (HOS) are among the techniques used, along with deep learning models.
Název v anglickém jazyce
Robust Classification of PD Sources Using Deep Learning and Signal Processing Techniques
Popis výsledku anglicky
Partial discharge (PD) pattern recognition technologies are highly valuable for the predictive maintenance and diagnosis of electrical insulation systems. PD signals are generated when the voltage across the cavity embedded in the insulation system exceeds the PD inception voltage. These signals are low-energy, high-frequency, and stochastic, making analysis extremely challenging since common signal processing methods cannot analyze and interpret their transient, non-stationary characteristics. It is crucial to address PD pattern recognition with a comprehensive strategy that includes collecting PD databases, feature extraction, and applying proper machine learning models. Using cutting-edge PD signal processing techniques and deep learning, PD patterns could be successfully analyzed and interpreted, resulting in the early identification of PD sources inside insulation and reducing the likelihood of system failure. The aim of the paper is to investigate and evaluate various methods to recognize partial discharge (PD) signals as single PD source (SPS) or double PD sources (DPS). Wavelet Analysis, Short-Time Fourier Transform (STFT), Wigner-Ville Distribution (WVD), Empirical Mode Decomposition (EMD), and Higher-Order Statistics (HOS) are among the techniques used, along with deep learning models.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 International Conference on Diagnostics in Electrical Engineering (Diagnostika)
ISBN
979-8-3503-6149-0
ISSN
2464-708X
e-ISSN
2464-708X
Počet stran výsledku
5
Strana od-do
117-121
Název nakladatele
Institute of Electrical and Electronics Engineers, Inc.
Místo vydání
—
Místo konání akce
Plzeň
Datum konání akce
3. 8. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001345150300024