Fusion Transformer with Object Mask Guidance for Image Forgery Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00379884" target="_blank" >RIV/68407700:21230/24:00379884 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/CVPRW63382.2024.00438" target="_blank" >https://doi.org/10.1109/CVPRW63382.2024.00438</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPRW63382.2024.00438" target="_blank" >10.1109/CVPRW63382.2024.00438</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fusion Transformer with Object Mask Guidance for Image Forgery Analysis
Popis výsledku v původním jazyce
In this work we introduce OMG-Fuser a fusion transformer-based network designed to extract information from various forensic signals to enable robust image forgery detection and localization. Our approach can operate with an arbitrary number of forensic signals and leverages object information for their analysis -- unlike previous methods that rely on fusion schemes with few signals and often disregard image semantics. To this end we design a forensic signal stream composed of a transformer guided by an object attention mechanism associating patches that depict the same objects. In that way we incorporate object-level information from the image. Each forensic signal is processed by a different stream that adapts to its peculiarities. A token fusion transformer efficiently aggregates the outputs of an arbitrary number of network streams and generates a fused representation for each image patch. % These representations are finally processed by a long-range dependencies transformer that captures the intrinsic relations between the image patches. We assess two fusion variants on top of the proposed approach: (i) score-level fusion that fuses the outputs of multiple image forensics algorithms and (ii) feature-level fusion that fuses low-level forensic traces directly. Both variants exceed state-of-the-art performance on seven datasets for image forgery detection and localization with a relative average improvement of 12.1% and 20.4% in terms of F1. Our model is robust against traditional and novel forgery attacks and can be expanded with new signals without training from scratch. Our code is publicly available at: https://github.com/mever-team/omgfuser
Název v anglickém jazyce
Fusion Transformer with Object Mask Guidance for Image Forgery Analysis
Popis výsledku anglicky
In this work we introduce OMG-Fuser a fusion transformer-based network designed to extract information from various forensic signals to enable robust image forgery detection and localization. Our approach can operate with an arbitrary number of forensic signals and leverages object information for their analysis -- unlike previous methods that rely on fusion schemes with few signals and often disregard image semantics. To this end we design a forensic signal stream composed of a transformer guided by an object attention mechanism associating patches that depict the same objects. In that way we incorporate object-level information from the image. Each forensic signal is processed by a different stream that adapts to its peculiarities. A token fusion transformer efficiently aggregates the outputs of an arbitrary number of network streams and generates a fused representation for each image patch. % These representations are finally processed by a long-range dependencies transformer that captures the intrinsic relations between the image patches. We assess two fusion variants on top of the proposed approach: (i) score-level fusion that fuses the outputs of multiple image forensics algorithms and (ii) feature-level fusion that fuses low-level forensic traces directly. Both variants exceed state-of-the-art performance on seven datasets for image forgery detection and localization with a relative average improvement of 12.1% and 20.4% in terms of F1. Our model is robust against traditional and novel forgery attacks and can be expanded with new signals without training from scratch. Our code is publicly available at: https://github.com/mever-team/omgfuser
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GM21-28830M" target="_blank" >GM21-28830M: Učení Univerzální Vizuální Reprezentace s Omezenou Supervizí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
ISBN
979-8-3503-6547-4
ISSN
2160-7508
e-ISSN
2160-7516
Počet stran výsledku
11
Strana od-do
4345-4355
Název nakladatele
IEEE Computer Society
Místo vydání
Los Alamitos
Místo konání akce
Seattle
Datum konání akce
16. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001327781704051