Camera Pose Estimation from Bounding Boxes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00380082" target="_blank" >RIV/68407700:21230/24:00380082 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/24:00380082
Výsledek na webu
<a href="https://doi.org/10.1109/IROS58592.2024.10801546" target="_blank" >https://doi.org/10.1109/IROS58592.2024.10801546</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS58592.2024.10801546" target="_blank" >10.1109/IROS58592.2024.10801546</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Camera Pose Estimation from Bounding Boxes
Popis výsledku v původním jazyce
Visual localization is an important part of many interesting applications, including robotics. The dominant localization strategy is to estimate the camera pose from 2D-3D matches between 2D pixel positions and 3D points. Yet, such approaches can be quite memory intensive and can lead to privacy risks. An interesting alternative to point-based matches is to use higher-level primitives for pose estimation. Consequently, this work investigates using correspondences between 2D and 3D bounding boxes for camera pose estimation. The resulting scene representation is compact and poses fewer privacy risks. In this setting, there are typically orders of magnitude fewer matches available compared to classical feature-based methods. In addition, the available correspondences are significantly more noisy. We investigate multiple strategies based on converting bounding box correspondences to point correspondences and propose a novel and simple 2-point camera absolute pose solver (DP2P) that exploits the fact that the depths of the objects can be approximated from the sizes of their bounding boxes.
Název v anglickém jazyce
Camera Pose Estimation from Bounding Boxes
Popis výsledku anglicky
Visual localization is an important part of many interesting applications, including robotics. The dominant localization strategy is to estimate the camera pose from 2D-3D matches between 2D pixel positions and 3D points. Yet, such approaches can be quite memory intensive and can lead to privacy risks. An interesting alternative to point-based matches is to use higher-level primitives for pose estimation. Consequently, this work investigates using correspondences between 2D and 3D bounding boxes for camera pose estimation. The resulting scene representation is compact and poses fewer privacy risks. In this setting, there are typically orders of magnitude fewer matches available compared to classical feature-based methods. In addition, the available correspondences are significantly more noisy. We investigate multiple strategies based on converting bounding box correspondences to point correspondences and propose a novel and simple 2-point camera absolute pose solver (DP2P) that exploits the fact that the depths of the objects can be approximated from the sizes of their bounding boxes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GM22-23183M" target="_blank" >GM22-23183M: Nová generace algoritmů pro řešení problémů geometrie kamer</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
ISBN
979-8-3503-7770-5
ISSN
2153-0858
e-ISSN
2153-0866
Počet stran výsledku
8
Strana od-do
5535-5542
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Abu Dhabi
Datum konání akce
14. 10. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001411890000558