Enhanced routing algorithm for opportunistic networking: On the improvement of the basic opportunistic networking routing algorithm by the application of machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F14%3A00240678" target="_blank" >RIV/68407700:21240/14:00240678 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.scopus.com/record/display.uri?eid=2-s2.0-84902310407&origin=resultslist&sort=plf-f&src=s&st1=Enhanced+routing+algorithm+for+opportunistic&st2=&sid=615D962B926000A023237CA84D4A95DA.FZg2ODcJC9ArCe8WOZPvA%3a130&sot=b&sdt=b&sl=59&s=TITLE-ABS-KEY%2" target="_blank" >http://www.scopus.com/record/display.uri?eid=2-s2.0-84902310407&origin=resultslist&sort=plf-f&src=s&st1=Enhanced+routing+algorithm+for+opportunistic&st2=&sid=615D962B926000A023237CA84D4A95DA.FZg2ODcJC9ArCe8WOZPvA%3a130&sot=b&sdt=b&sl=59&s=TITLE-ABS-KEY%2</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhanced routing algorithm for opportunistic networking: On the improvement of the basic opportunistic networking routing algorithm by the application of machine learning
Popis výsledku v původním jazyce
The opportunistic communication networks are special communication networks where no assumption is made on the existence of a complete path between two nodes wishing to communicate; the source and destination nodes needn't be connected to the same network at the same time. This assumption makes the routing in these networks extremely difficult. We proposed the novel opportunistic networking routing algorithm, which improves the basic opportunistic networking routing algorithm by application of machine learning. The HMM Autonomous Robot Mobility Models and Node Reachability Model are constructed from the observed data and used in a proposed routing scheme in order to compute the combined probabilities of message delivery to the destination node. In theproposed routing scheme, the messages are coppied between two nodes only if the combined probability of the message delivery to the destination node is higher than the preliminary defined limit value. The routing scheme was developed for
Název v anglickém jazyce
Enhanced routing algorithm for opportunistic networking: On the improvement of the basic opportunistic networking routing algorithm by the application of machine learning
Popis výsledku anglicky
The opportunistic communication networks are special communication networks where no assumption is made on the existence of a complete path between two nodes wishing to communicate; the source and destination nodes needn't be connected to the same network at the same time. This assumption makes the routing in these networks extremely difficult. We proposed the novel opportunistic networking routing algorithm, which improves the basic opportunistic networking routing algorithm by application of machine learning. The HMM Autonomous Robot Mobility Models and Node Reachability Model are constructed from the observed data and used in a proposed routing scheme in order to compute the combined probabilities of message delivery to the destination node. In theproposed routing scheme, the messages are coppied between two nodes only if the combined probability of the message delivery to the destination node is higher than the preliminary defined limit value. The routing scheme was developed for
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JB - Senzory, čidla, měření a regulace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LG14005" target="_blank" >LG14005: Práce v Technickém výboru 4.2 Technical Committee on Mechatronic Systems Mezinárodní federace pro automatické řízení (IFAC)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICPRAM 2014 - Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods
ISBN
978-989-758-018-5
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
771-776
Název nakladatele
Academic Science Research
Místo vydání
Paris
Místo konání akce
Loire Valley; France
Datum konání akce
6. 3. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—