Multimodal Fusion: Combining Visual and Textual Cues for Concept Detection in Video
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F15%3A00224288" target="_blank" >RIV/68407700:21240/15:00224288 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-14998-1_13" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-14998-1_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-14998-1_13" target="_blank" >10.1007/978-3-319-14998-1_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multimodal Fusion: Combining Visual and Textual Cues for Concept Detection in Video
Popis výsledku v původním jazyce
Visual concept detection is one of the most active research areas in multimedia analysis. The goal of visual concept detection is to assign to each elementary temporal segment of a video, a confidence score for each target concept (e.g. forest, ocean, sky, etc.). The establishment of such associations between the video content and the concept labels is a key step toward semantics-based indexing, retrieval, and summarization of videos, as well as deeper analysis (e.g., video event detection). Due to itssignificance for the multimedia analysis community, concept detection is the topic of international benchmarking activities such as TRECVID. While video is typically a multi-modal signal composed of visual content, speech, audio, and possibly also subtitles, most research has so far focused on exploiting the visual modality. In this chapter we introduce fusion and text analysis techniques for harnessing automatic speech recognition (ASR) transcripts or subtitles for improving the results
Název v anglickém jazyce
Multimodal Fusion: Combining Visual and Textual Cues for Concept Detection in Video
Popis výsledku anglicky
Visual concept detection is one of the most active research areas in multimedia analysis. The goal of visual concept detection is to assign to each elementary temporal segment of a video, a confidence score for each target concept (e.g. forest, ocean, sky, etc.). The establishment of such associations between the video content and the concept labels is a key step toward semantics-based indexing, retrieval, and summarization of videos, as well as deeper analysis (e.g., video event detection). Due to itssignificance for the multimedia analysis community, concept detection is the topic of international benchmarking activities such as TRECVID. While video is typically a multi-modal signal composed of visual content, speech, audio, and possibly also subtitles, most research has so far focused on exploiting the visual modality. In this chapter we introduce fusion and text analysis techniques for harnessing automatic speech recognition (ASR) transcripts or subtitles for improving the results
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Multimedia Data Mining and Analytics
ISBN
978-3-319-14997-4
Počet stran výsledku
16
Strana od-do
295-310
Počet stran knihy
454
Název nakladatele
Springer International Publishing AG
Místo vydání
Cham
Kód UT WoS kapitoly
—