Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bolzano’s measurable numbers: are they real?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F16%3A00306930" target="_blank" >RIV/68407700:21240/16:00306930 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bolzano’s measurable numbers: are they real?

  • Popis výsledku v původním jazyce

    During the early 1830's Bernard Bolzano, working in Prague, wrote a manuscript giving a foundational account of numbers and their properties. In the final section of his work he described what he called 'infinite number expressions' and 'measurable numbers'. This work was evidently an attempt to provide an improved proof of the sufficiency of the criterion usually known as the 'Cauchy criterion' for the convergence of an infinite sequence. Bolzano had in fact published this criterion four years earlier than Cauchy who, in his work of 1821, made no attempt at a proof. Any such proof required the construction or definition of real numbers and this, in essence, was what Bolzano achieved in his work on measurable numbers. It therefore pre-dates the well-known constructions of Dedekind, Cantor and many others by several decades. Bolzano's manuscript was partially published in 1962 and more fully published in 1976. We give an account of measurable numbers, the properties Bolzano proved about them, and the controversial reception they have prompted since their publication.

  • Název v anglickém jazyce

    Bolzano’s measurable numbers: are they real?

  • Popis výsledku anglicky

    During the early 1830's Bernard Bolzano, working in Prague, wrote a manuscript giving a foundational account of numbers and their properties. In the final section of his work he described what he called 'infinite number expressions' and 'measurable numbers'. This work was evidently an attempt to provide an improved proof of the sufficiency of the criterion usually known as the 'Cauchy criterion' for the convergence of an infinite sequence. Bolzano had in fact published this criterion four years earlier than Cauchy who, in his work of 1821, made no attempt at a proof. Any such proof required the construction or definition of real numbers and this, in essence, was what Bolzano achieved in his work on measurable numbers. It therefore pre-dates the well-known constructions of Dedekind, Cantor and many others by several decades. Bolzano's manuscript was partially published in 1962 and more fully published in 1976. We give an account of measurable numbers, the properties Bolzano proved about them, and the controversial reception they have prompted since their publication.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Research in History and Philosophy of Mathematics

  • ISBN

    978-3-319-43269-4

  • Počet stran výsledku

    18

  • Strana od-do

    39-56

  • Počet stran knihy

    248

  • Název nakladatele

    Birkhäuser

  • Místo vydání

    Basel

  • Kód UT WoS kapitoly