Bolzano’s measurable numbers: are they real?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F16%3A00306930" target="_blank" >RIV/68407700:21240/16:00306930 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bolzano’s measurable numbers: are they real?
Popis výsledku v původním jazyce
During the early 1830's Bernard Bolzano, working in Prague, wrote a manuscript giving a foundational account of numbers and their properties. In the final section of his work he described what he called 'infinite number expressions' and 'measurable numbers'. This work was evidently an attempt to provide an improved proof of the sufficiency of the criterion usually known as the 'Cauchy criterion' for the convergence of an infinite sequence. Bolzano had in fact published this criterion four years earlier than Cauchy who, in his work of 1821, made no attempt at a proof. Any such proof required the construction or definition of real numbers and this, in essence, was what Bolzano achieved in his work on measurable numbers. It therefore pre-dates the well-known constructions of Dedekind, Cantor and many others by several decades. Bolzano's manuscript was partially published in 1962 and more fully published in 1976. We give an account of measurable numbers, the properties Bolzano proved about them, and the controversial reception they have prompted since their publication.
Název v anglickém jazyce
Bolzano’s measurable numbers: are they real?
Popis výsledku anglicky
During the early 1830's Bernard Bolzano, working in Prague, wrote a manuscript giving a foundational account of numbers and their properties. In the final section of his work he described what he called 'infinite number expressions' and 'measurable numbers'. This work was evidently an attempt to provide an improved proof of the sufficiency of the criterion usually known as the 'Cauchy criterion' for the convergence of an infinite sequence. Bolzano had in fact published this criterion four years earlier than Cauchy who, in his work of 1821, made no attempt at a proof. Any such proof required the construction or definition of real numbers and this, in essence, was what Bolzano achieved in his work on measurable numbers. It therefore pre-dates the well-known constructions of Dedekind, Cantor and many others by several decades. Bolzano's manuscript was partially published in 1962 and more fully published in 1976. We give an account of measurable numbers, the properties Bolzano proved about them, and the controversial reception they have prompted since their publication.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Research in History and Philosophy of Mathematics
ISBN
978-3-319-43269-4
Počet stran výsledku
18
Strana od-do
39-56
Počet stran knihy
248
Název nakladatele
Birkhäuser
Místo vydání
Basel
Kód UT WoS kapitoly
—