Probabilistic Static Load-Balancing of Parallel Mining of Frequent Sequences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F16%3A00338693" target="_blank" >RIV/68407700:21240/16:00338693 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TKDE.2016.2515622" target="_blank" >https://doi.org/10.1109/TKDE.2016.2515622</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TKDE.2016.2515622" target="_blank" >10.1109/TKDE.2016.2515622</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Probabilistic Static Load-Balancing of Parallel Mining of Frequent Sequences
Popis výsledku v původním jazyce
Frequent sequence mining is well known and well studied problem in datamining. The output of the algorithm is used in many other areas like bioinformatics, chemistry, and market basket analysis. Unfortunately, the frequent sequence mining is computationally quite expensive. In this paper, we present a novel parallel algorithm for mining of frequent sequences based on a static load-balancing. The static load-balancing is done by measuring the computational time using a probabilistic algorithm. For reasonable size of instance, the algorithms achieve speedups up to approximate to 3/4 . P where P is the number of processors. In the experimental evaluation, we show that our method performs significantly better then the current state-of-the-art methods. The presented approach is very universal: it can be used for static load-balancing of other pattern mining algorithms such as itemset/tree/graph mining algorithms.
Název v anglickém jazyce
Probabilistic Static Load-Balancing of Parallel Mining of Frequent Sequences
Popis výsledku anglicky
Frequent sequence mining is well known and well studied problem in datamining. The output of the algorithm is used in many other areas like bioinformatics, chemistry, and market basket analysis. Unfortunately, the frequent sequence mining is computationally quite expensive. In this paper, we present a novel parallel algorithm for mining of frequent sequences based on a static load-balancing. The static load-balancing is done by measuring the computational time using a probabilistic algorithm. For reasonable size of instance, the algorithms achieve speedups up to approximate to 3/4 . P where P is the number of processors. In the experimental evaluation, we show that our method performs significantly better then the current state-of-the-art methods. The presented approach is very universal: it can be used for static load-balancing of other pattern mining algorithms such as itemset/tree/graph mining algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Knowledge and Data Engineering
ISSN
1041-4347
e-ISSN
1558-2191
Svazek periodika
28
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
1299-1311
Kód UT WoS článku
000374523000016
EID výsledku v databázi Scopus
—