Asymmetric Heterogeneous Transfer Learning: A Survey
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F17%3A00312664" target="_blank" >RIV/68407700:21240/17:00312664 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=mcEq1hvaErY=&t=1" target="_blank" >http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=mcEq1hvaErY=&t=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0006396700170027" target="_blank" >10.5220/0006396700170027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asymmetric Heterogeneous Transfer Learning: A Survey
Popis výsledku v původním jazyce
One of the main prerequisites in most machine learning and data mining tasks is that all available data originates from the same domain. In practice, we often can’t meet this requirement due to poor quality, unavailable data or missing data attributes (new task, e.g. cold-start problem). A possible solution can be the combination of data from different domains represented by different feature spaces, which relate to the same task. We can also transfer the knowledge from a different but related task that has been learned already. Such a solution is called transfer learning and it is very helpful in cases where collecting data is expensive, difficult or impossible. This overview focuses on the current progress in the new and unique area of transfer learning - asymmetric heterogeneous transfer learning. This type of transfer learning considers the same task solved using data from different feature spaces. Through suitable mappings between these different feature spaces we can get more data for solving data mining tasks. We discuss approaches and methods for solving this type of transfer learning tasks. Furthermore, we mention the most used metrics and the possibility of using metric or similarity learning.
Název v anglickém jazyce
Asymmetric Heterogeneous Transfer Learning: A Survey
Popis výsledku anglicky
One of the main prerequisites in most machine learning and data mining tasks is that all available data originates from the same domain. In practice, we often can’t meet this requirement due to poor quality, unavailable data or missing data attributes (new task, e.g. cold-start problem). A possible solution can be the combination of data from different domains represented by different feature spaces, which relate to the same task. We can also transfer the knowledge from a different but related task that has been learned already. Such a solution is called transfer learning and it is very helpful in cases where collecting data is expensive, difficult or impossible. This overview focuses on the current progress in the new and unique area of transfer learning - asymmetric heterogeneous transfer learning. This type of transfer learning considers the same task solved using data from different feature spaces. Through suitable mappings between these different feature spaces we can get more data for solving data mining tasks. We discuss approaches and methods for solving this type of transfer learning tasks. Furthermore, we mention the most used metrics and the possibility of using metric or similarity learning.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 6th International Conference on Data Science, Technology and Applications
ISBN
978-989-758-255-4
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
17-27
Název nakladatele
SciTePress - Science and Technology Publications
Místo vydání
Porto
Místo konání akce
Madrid
Datum konání akce
24. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—