Breaking CAPTCHAs with Convolutional Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F17%3A00324710" target="_blank" >RIV/68407700:21240/17:00324710 - isvavai.cz</a>
Výsledek na webu
<a href="http://ceur-ws.org/Vol-1885/93.pdf" target="_blank" >http://ceur-ws.org/Vol-1885/93.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Breaking CAPTCHAs with Convolutional Neural Networks
Popis výsledku v původním jazyce
This paper studies reverse Turing tests to distinguish humans and computers, called CAPTCHA. Contrary to classical Turing tests, in this case the judge is not a human but a computer. The main purpose of such tests is securing user logins against the dictionary or brute force password guessing, avoiding automated usage of various services, preventing bots from spamming on forums and many others. Typical approaches to solving text-based CAPTCHA automatically are based on a scheme specific pipeline containing hand-designed pre-processing, denoising, segmentation, post processing and optical character recognition. Only the last part, optical character recognition, is usually based on some machine learning algorithm. We present an approach using neural networks and a simple clustering algorithm that consists of only two steps, character localisation and recognition. We tested our approach on 11 different schemes selected to present very diverse security features. We experimentally show that using convolutional neural networks is superior to multi-layered perceptrons.
Název v anglickém jazyce
Breaking CAPTCHAs with Convolutional Neural Networks
Popis výsledku anglicky
This paper studies reverse Turing tests to distinguish humans and computers, called CAPTCHA. Contrary to classical Turing tests, in this case the judge is not a human but a computer. The main purpose of such tests is securing user logins against the dictionary or brute force password guessing, avoiding automated usage of various services, preventing bots from spamming on forums and many others. Typical approaches to solving text-based CAPTCHA automatically are based on a scheme specific pipeline containing hand-designed pre-processing, denoising, segmentation, post processing and optical character recognition. Only the last part, optical character recognition, is usually based on some machine learning algorithm. We present an approach using neural networks and a simple clustering algorithm that consists of only two steps, character localisation and recognition. We tested our approach on 11 different schemes selected to present very diverse security features. We experimentally show that using convolutional neural networks is superior to multi-layered perceptrons.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ITAT 2017: Information Technologies – Applications and Theory
ISBN
—
ISSN
1613-0073
e-ISSN
1613-0073
Počet stran výsledku
7
Strana od-do
93-99
Název nakladatele
CEUR Workshop Proceedings
Místo vydání
Aachen
Místo konání akce
Martinské hole, Malá Fatra
Datum konání akce
22. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—