Reconstructing a String from its Lyndon Arrays
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00313940" target="_blank" >RIV/68407700:21240/18:00313940 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.tcs.2017.04.008" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2017.04.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2017.04.008" target="_blank" >10.1016/j.tcs.2017.04.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reconstructing a String from its Lyndon Arrays
Popis výsledku v původním jazyce
Given a string x = x[1.. n] on an ordered alphabet of size σ , the Lyndon array λ = λx [1..n] of x is an array of positive integers such that λ[i], 1 <= i <= n, is the length of the maximal Lyndon word over the ordering of that begins at position i in x. The Lyndon array has recently attracted considerable attention due to its pivotal role in establishing the long-standing conjecture that ρ (n ) < n, where ρ ( n) is the maximum number of maximal periodicities (runs) in any string of length n. Here we first describe two linear-time algorithms that, given a valid Lyndon array λ, compute a corresponding string — one for an alphabet of size n, the other for a smaller alphabet. We go on to describe another linear-time algorithm that determines whether or not a given integer array is a Lyndon array of some string. Finally we show how σ Lyndon arrays λ = {λ1 = λ, λ2 , . . . , λσ } corresponding to σ “rotations” of the alphabet can be used to determine uniquely the string x on such that λx = λ.
Název v anglickém jazyce
Reconstructing a String from its Lyndon Arrays
Popis výsledku anglicky
Given a string x = x[1.. n] on an ordered alphabet of size σ , the Lyndon array λ = λx [1..n] of x is an array of positive integers such that λ[i], 1 <= i <= n, is the length of the maximal Lyndon word over the ordering of that begins at position i in x. The Lyndon array has recently attracted considerable attention due to its pivotal role in establishing the long-standing conjecture that ρ (n ) < n, where ρ ( n) is the maximum number of maximal periodicities (runs) in any string of length n. Here we first describe two linear-time algorithms that, given a valid Lyndon array λ, compute a corresponding string — one for an alphabet of size n, the other for a smaller alphabet. We go on to describe another linear-time algorithm that determines whether or not a given integer array is a Lyndon array of some string. Finally we show how σ Lyndon arrays λ = {λ1 = λ, λ2 , . . . , λσ } corresponding to σ “rotations” of the alphabet can be used to determine uniquely the string x on such that λx = λ.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
1879-2294
Svazek periodika
710
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
44-51
Kód UT WoS článku
000424958900006
EID výsledku v databázi Scopus
—