High-Multiplicity Fair Allocation: Lenstra Empowered by N-fold Integer Programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F19%3A00332046" target="_blank" >RIV/68407700:21240/19:00332046 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/3328526.3329649" target="_blank" >http://dx.doi.org/10.1145/3328526.3329649</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3328526.3329649" target="_blank" >10.1145/3328526.3329649</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High-Multiplicity Fair Allocation: Lenstra Empowered by N-fold Integer Programming
Popis výsledku v původním jazyce
We study the (parameterized) computational complexity of problems in the context of fair allocations of indivisible goods. More specifically, we show fixed-parameter tractability results for a broad set of problems concerned with envy-free, Pareto-efficient allocations of items (with agent-specific utility functions) to agents. In principle, this implies efficient exact algorithms for these in general computationally intractable problems whenever we face instances with few agents and low maximum (absolute) utility values. This holds true also in high-multiplicity settings where we may have high numbers of identical items. On the technical side, our approach provides algorithmic meta-theorems covering a rich set of fair allocation problems in the additive preferences model. To achieve this, our main technical contribution is to make an elaborate use of tools from integer linear programming. More specifically, we exploit results originally going back to a famous theorem of Lenstra [Math. Oper. Res. 1983] concerning (the fixed-parameter tractability of) Integer Linear Programs (ILPs) with bounded dimension (that is, the dimension shall be considered as a (small) parameter) and the more recent framework of (combinatorial) N-fold ILPs. We reveal and exploit a fruitful interaction between these two cornerstones in the theory of integer linear programming, which may be of independent interest in applications going beyond fair allocations.
Název v anglickém jazyce
High-Multiplicity Fair Allocation: Lenstra Empowered by N-fold Integer Programming
Popis výsledku anglicky
We study the (parameterized) computational complexity of problems in the context of fair allocations of indivisible goods. More specifically, we show fixed-parameter tractability results for a broad set of problems concerned with envy-free, Pareto-efficient allocations of items (with agent-specific utility functions) to agents. In principle, this implies efficient exact algorithms for these in general computationally intractable problems whenever we face instances with few agents and low maximum (absolute) utility values. This holds true also in high-multiplicity settings where we may have high numbers of identical items. On the technical side, our approach provides algorithmic meta-theorems covering a rich set of fair allocation problems in the additive preferences model. To achieve this, our main technical contribution is to make an elaborate use of tools from integer linear programming. More specifically, we exploit results originally going back to a famous theorem of Lenstra [Math. Oper. Res. 1983] concerning (the fixed-parameter tractability of) Integer Linear Programs (ILPs) with bounded dimension (that is, the dimension shall be considered as a (small) parameter) and the more recent framework of (combinatorial) N-fold ILPs. We reveal and exploit a fruitful interaction between these two cornerstones in the theory of integer linear programming, which may be of independent interest in applications going beyond fair allocations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-20065S" target="_blank" >GA17-20065S: Těsné parametrizované výsledky pro problémy orientované souvislosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EC '19 Proceedings of the 2019 ACM Conference on Economics and Computation
ISBN
9781450367929
ISSN
—
e-ISSN
—
Počet stran výsledku
19
Strana od-do
505-523
Název nakladatele
ACM
Místo vydání
New York
Místo konání akce
Phoenix, TX
Datum konání akce
24. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000483848100057