FAIR Convergence Matrix: Optimizing the Reuse of Existing FAIR-Related Resources
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F19%3A00338484" target="_blank" >RIV/68407700:21240/19:00338484 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1162/dint_a_00038" target="_blank" >https://doi.org/10.1162/dint_a_00038</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/dint_a_00038" target="_blank" >10.1162/dint_a_00038</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
FAIR Convergence Matrix: Optimizing the Reuse of Existing FAIR-Related Resources
Popis výsledku v původním jazyce
The FAIR Principles articulate the behaviors expected from digital artifacts that are Findable, Accessible, Interoperable and Reusable by machines and by people. Although by now widely accepted, the FAIR Principles by design do not explicitly consider actual implementation choices enabling FAIR behaviors. As different communities have their own, often well-established implementation preferences and priorities for data reuse, coordinating a broadly accepted, widely used FAIR implementation approach remains a global challenge. In an effort to accelerate broad community convergence on FAIR implementation options, the GO FAIR community has launched the development of the FAIR Convergence Matrix. The Matrix is a platform that compiles for any community of practice, an inventory of their self-declared FAIR implementation choices and challenges. The Convergence Matrix is itself a FAIR resource, openly available, and encourages voluntary participation by any self-identified community of practice (not only the GO FAIR Implementation Networks). Based on patterns of use and reuse of existing resources, the Convergence Matrix supports the transparent derivation of strategies that optimally coordinate convergence on standards and technologies in the emerging Internet of FAIR Data and Services.
Název v anglickém jazyce
FAIR Convergence Matrix: Optimizing the Reuse of Existing FAIR-Related Resources
Popis výsledku anglicky
The FAIR Principles articulate the behaviors expected from digital artifacts that are Findable, Accessible, Interoperable and Reusable by machines and by people. Although by now widely accepted, the FAIR Principles by design do not explicitly consider actual implementation choices enabling FAIR behaviors. As different communities have their own, often well-established implementation preferences and priorities for data reuse, coordinating a broadly accepted, widely used FAIR implementation approach remains a global challenge. In an effort to accelerate broad community convergence on FAIR implementation options, the GO FAIR community has launched the development of the FAIR Convergence Matrix. The Matrix is a platform that compiles for any community of practice, an inventory of their self-declared FAIR implementation choices and challenges. The Convergence Matrix is itself a FAIR resource, openly available, and encourages voluntary participation by any self-identified community of practice (not only the GO FAIR Implementation Networks). Based on patterns of use and reuse of existing resources, the Convergence Matrix supports the transparent derivation of strategies that optimally coordinate convergence on standards and technologies in the emerging Internet of FAIR Data and Services.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Data Intelligence
ISSN
2641-435X
e-ISSN
2641-435X
Svazek periodika
2020
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
13
Strana od-do
158-170
Kód UT WoS článku
000691825600017
EID výsledku v databázi Scopus
2-s2.0-85090223977