Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

QoD: Ideas about Evaluating Quality of Datasets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00344910" target="_blank" >RIV/68407700:21240/20:00344910 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pesw.fit.cvut.cz/2020/PESW_2020.pdf" target="_blank" >https://pesw.fit.cvut.cz/2020/PESW_2020.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    QoD: Ideas about Evaluating Quality of Datasets

  • Popis výsledku v původním jazyce

    Importance of computer networks is raising every year. The reason is that we are connecting more and more devices, applications and our daily routines depends on connectivity. On the other hand, this is a great potential for attackers. They can hide their activities in complex network environment and steal valuable data. Without solid dataset, our evaluation score is misinterpreting the real score in production environment, and, therefore, proper datasets have essential role in research&development of any ML-based classifier or detector. The main motivation for this paper is to find a way how to evaluate quality of any dataset to estimate if it is good enough for ML experiments. To our best knowledge, there are only a few studies focused on quality evaluation of datasets with network traffic. For experiments, we selected datasets about DNS over HTTP (DoH) detection and URL classification problems that are already being elaborated. All metrics are calculated from dataset level. Impact of these metrics is evaluated on Random Forest (RF) model. We show results we have discovered in our datasets and ML detection modules. Eventually, we discuss possible next steps in this research.

  • Název v anglickém jazyce

    QoD: Ideas about Evaluating Quality of Datasets

  • Popis výsledku anglicky

    Importance of computer networks is raising every year. The reason is that we are connecting more and more devices, applications and our daily routines depends on connectivity. On the other hand, this is a great potential for attackers. They can hide their activities in complex network environment and steal valuable data. Without solid dataset, our evaluation score is misinterpreting the real score in production environment, and, therefore, proper datasets have essential role in research&development of any ML-based classifier or detector. The main motivation for this paper is to find a way how to evaluate quality of any dataset to estimate if it is good enough for ML experiments. To our best knowledge, there are only a few studies focused on quality evaluation of datasets with network traffic. For experiments, we selected datasets about DNS over HTTP (DoH) detection and URL classification problems that are already being elaborated. All metrics are calculated from dataset level. Impact of these metrics is evaluated on Random Forest (RF) model. We show results we have discovered in our datasets and ML detection modules. Eventually, we discuss possible next steps in this research.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 8th Prague Embedded Systems Workshop

  • ISBN

    978-80-01-06772-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    2

  • Strana od-do

    8-9

  • Název nakladatele

    České vysoké učení technické v Praze

  • Místo vydání

    Praha

  • Místo konání akce

    Praha, virtual

  • Datum konání akce

    6. 11. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku