QoD: Ideas about Evaluating Quality of Datasets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00344910" target="_blank" >RIV/68407700:21240/20:00344910 - isvavai.cz</a>
Výsledek na webu
<a href="https://pesw.fit.cvut.cz/2020/PESW_2020.pdf" target="_blank" >https://pesw.fit.cvut.cz/2020/PESW_2020.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
QoD: Ideas about Evaluating Quality of Datasets
Popis výsledku v původním jazyce
Importance of computer networks is raising every year. The reason is that we are connecting more and more devices, applications and our daily routines depends on connectivity. On the other hand, this is a great potential for attackers. They can hide their activities in complex network environment and steal valuable data. Without solid dataset, our evaluation score is misinterpreting the real score in production environment, and, therefore, proper datasets have essential role in research&development of any ML-based classifier or detector. The main motivation for this paper is to find a way how to evaluate quality of any dataset to estimate if it is good enough for ML experiments. To our best knowledge, there are only a few studies focused on quality evaluation of datasets with network traffic. For experiments, we selected datasets about DNS over HTTP (DoH) detection and URL classification problems that are already being elaborated. All metrics are calculated from dataset level. Impact of these metrics is evaluated on Random Forest (RF) model. We show results we have discovered in our datasets and ML detection modules. Eventually, we discuss possible next steps in this research.
Název v anglickém jazyce
QoD: Ideas about Evaluating Quality of Datasets
Popis výsledku anglicky
Importance of computer networks is raising every year. The reason is that we are connecting more and more devices, applications and our daily routines depends on connectivity. On the other hand, this is a great potential for attackers. They can hide their activities in complex network environment and steal valuable data. Without solid dataset, our evaluation score is misinterpreting the real score in production environment, and, therefore, proper datasets have essential role in research&development of any ML-based classifier or detector. The main motivation for this paper is to find a way how to evaluate quality of any dataset to estimate if it is good enough for ML experiments. To our best knowledge, there are only a few studies focused on quality evaluation of datasets with network traffic. For experiments, we selected datasets about DNS over HTTP (DoH) detection and URL classification problems that are already being elaborated. All metrics are calculated from dataset level. Impact of these metrics is evaluated on Random Forest (RF) model. We show results we have discovered in our datasets and ML detection modules. Eventually, we discuss possible next steps in this research.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 8th Prague Embedded Systems Workshop
ISBN
978-80-01-06772-7
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
8-9
Název nakladatele
České vysoké učení technické v Praze
Místo vydání
Praha
Místo konání akce
Praha, virtual
Datum konání akce
6. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—