Enhanced adaptive partitioning in a distributed graph database
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00345598" target="_blank" >RIV/68407700:21240/20:00345598 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1080/24751839.2020.1829387" target="_blank" >https://doi.org/10.1080/24751839.2020.1829387</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/24751839.2020.1829387" target="_blank" >10.1080/24751839.2020.1829387</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhanced adaptive partitioning in a distributed graph database
Popis výsledku v původním jazyce
Nowadays, open-source graph databases do not include an inherent mechanism for data relocation that would be based on their usage. They often do not offer even appropriate monitoring that could help to make such a decision. Information about data utilization could, however, work as an input to some decision- making process about more suitable data regrouping that could be much more efficient in terms of intra-network communication. Therefore, we created a module for the graph computational framework TinkerPop that logs traffic generated by the user queries. These logged records serve as an input for the algorithm of Adaptive Partitioning that we enhanced with better balancing, avoidance of local optima and the notion of weighted graphs. This approach yields a 70–80% improvement in intra-network communication, which is comparable to other methods, namely Ja-be-Ja, that offers similar results but has higher computational demands.
Název v anglickém jazyce
Enhanced adaptive partitioning in a distributed graph database
Popis výsledku anglicky
Nowadays, open-source graph databases do not include an inherent mechanism for data relocation that would be based on their usage. They often do not offer even appropriate monitoring that could help to make such a decision. Information about data utilization could, however, work as an input to some decision- making process about more suitable data regrouping that could be much more efficient in terms of intra-network communication. Therefore, we created a module for the graph computational framework TinkerPop that logs traffic generated by the user queries. These logged records serve as an input for the algorithm of Adaptive Partitioning that we enhanced with better balancing, avoidance of local optima and the notion of weighted graphs. This approach yields a 70–80% improvement in intra-network communication, which is comparable to other methods, namely Ja-be-Ja, that offers similar results but has higher computational demands.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Information and Telecommunication
ISSN
2475-1847
e-ISSN
2475-1847
Svazek periodika
5
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
104-120
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—