Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-Goal Multi-Agent Path Finding via Decoupled and Integrated Goal Vertex Ordering

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00350486" target="_blank" >RIV/68407700:21240/21:00350486 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ojs.aaai.org/index.php/AAAI/article/view/17472" target="_blank" >https://ojs.aaai.org/index.php/AAAI/article/view/17472</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-Goal Multi-Agent Path Finding via Decoupled and Integrated Goal Vertex Ordering

  • Popis výsledku v původním jazyce

    We introduce multi-goal multi agent path finding (MG-MAPF) which generalizes the standard discrete multi-agent path finding (MAPF) problem. While the task in MAPF is to navigate agents in an undirected graph from their starting vertices to one individual goal vertex per agent, MG-MAPF assigns each agent multiple goal vertices and the task is to visit each of them at least once. Solving MG-MAPF not only requires finding collision free paths for individual agents but also determining the order of visiting agent's goal vertices so that common objectives like the sum-of-costs are optimized. We suggest two novel algorithms using different paradigms to address MG-MAPF: a heuristic search-based algorithm called Hamiltonian-CBS (HCBS) and a compilation-based algorithm built using the satisfiability modulo theories (SMT), called SMT-Hamiltonian-CBS (SMT-HCBS).

  • Název v anglickém jazyce

    Multi-Goal Multi-Agent Path Finding via Decoupled and Integrated Goal Vertex Ordering

  • Popis výsledku anglicky

    We introduce multi-goal multi agent path finding (MG-MAPF) which generalizes the standard discrete multi-agent path finding (MAPF) problem. While the task in MAPF is to navigate agents in an undirected graph from their starting vertices to one individual goal vertex per agent, MG-MAPF assigns each agent multiple goal vertices and the task is to visit each of them at least once. Solving MG-MAPF not only requires finding collision free paths for individual agents but also determining the order of visiting agent's goal vertices so that common objectives like the sum-of-costs are optimized. We suggest two novel algorithms using different paradigms to address MG-MAPF: a heuristic search-based algorithm called Hamiltonian-CBS (HCBS) and a compilation-based algorithm built using the satisfiability modulo theories (SMT), called SMT-Hamiltonian-CBS (SMT-HCBS).

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-17966S" target="_blank" >GA19-17966S: intALG-MAPFg: Inteligentní algoritmy pro zobecněné varianty multi-agetního hledání cest</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence

  • ISBN

    978-1-57735-866-4

  • ISSN

    2159-5399

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    12409-12417

  • Název nakladatele

    AAAI Press

  • Místo vydání

    Menlo Park

  • Místo konání akce

    Virtual

  • Datum konání akce

    2. 2. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000681269804010