Performance Analysis of Neural Network Approach for Evaluation of Trust in Ad-Hoc Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00351927" target="_blank" >RIV/68407700:21240/21:00351927 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9548546" target="_blank" >https://ieeexplore.ieee.org/document/9548546</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACIT52158.2021.9548546" target="_blank" >10.1109/ACIT52158.2021.9548546</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance Analysis of Neural Network Approach for Evaluation of Trust in Ad-Hoc Networks
Popis výsledku v původním jazyce
With the world becoming more mobile and dynamic each year, the application of ad-hoc networks has broadened. Ad-hoc networks do not have a predefined infrastructure; each node serves as a router, bringing security challenges. Trust and trustworthiness mechanisms are among the most common methods for ensuring security in an ad-hoc network. In [1], we proposed a method for the evaluation of trust in ad-hoc networks. This paper aims to describe the method formally and analyze its performance. The original paper showed that neural networks could do trust estimation with an average 98% accuracy of the classification and 94% of the regression problem. This paper aims to investigate the capabilities of our method under malicious conditions. The analysis could also provide insight for tuning trust parameters, such as the threshold of trust. Furthermore, this paper presents a mathematical model behind the problem to show that the neural network approach is reasonable.
Název v anglickém jazyce
Performance Analysis of Neural Network Approach for Evaluation of Trust in Ad-Hoc Networks
Popis výsledku anglicky
With the world becoming more mobile and dynamic each year, the application of ad-hoc networks has broadened. Ad-hoc networks do not have a predefined infrastructure; each node serves as a router, bringing security challenges. Trust and trustworthiness mechanisms are among the most common methods for ensuring security in an ad-hoc network. In [1], we proposed a method for the evaluation of trust in ad-hoc networks. This paper aims to describe the method formally and analyze its performance. The original paper showed that neural networks could do trust estimation with an average 98% accuracy of the classification and 94% of the regression problem. This paper aims to investigate the capabilities of our method under malicious conditions. The analysis could also provide insight for tuning trust parameters, such as the threshold of trust. Furthermore, this paper presents a mathematical model behind the problem to show that the neural network approach is reasonable.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
11th International Conference on Advanced Computer Information Technologies (ACIT)
ISBN
978-1-6654-1854-6
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
691-695
Název nakladatele
IEEE (Institute of Electrical and Electronics Engineers)
Místo vydání
—
Místo konání akce
Deggendorf
Datum konání akce
15. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—